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Abstract. The aim of these notes is to present the argument establishing the
Burkholder-Davis-Gundy inequalities
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1. Lévy’s characterization of Brownian motion

In this section we tend to some unfinished business from the last sessions: Lévy’s
charachterization of Brownian motion. At this points this should be a very fast and
clear argument thanks to the machinery we have developped (Ito’s formula).

Theorem 1.1. (Lévy) X be a continuous (Ft)-adapted d-dimensional process with
X0 = 0. The following are equivalent

(1) X is an (Ft)-Brownian motion.

(2) X is a continuous local martingale and 〈X i, Xj〉t = δi,jt.

(3) X is a continuous local martingale and for every choice of functions f1, . . . , fd ∈
L2(R+) the process

Et = exp

(
i

d∑
k=1

∫ t

0

fk(s)dXk
s +

1

2

d∑
k=1

∫ t

0

f 2
k (s)ds

)
is a complex martingale.

Proof. The fact that (1) =⇒ (2) is clear. For (2) =⇒ (3) we use the ex-
ponential martingale with the complex coefficient λ = i on the local martingale
Mt =

∑d
k=1

∫ t

0
fk(s)dXk

s we get that Et = exp(iMt− i2

2
〈M,M〉t) is a local martingale.

But since E is bounded it is a complex martingale.

Now assume that (3) holds, then by chooseing fk = ξ1[0, T ] for a certain ξ ∈ Rd

and T > 0 we get
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Et = exp

(
i〈ξ,Xt∧T 〉+

1

2
|ξ|2t ∧ T )

)
is a maringale. Taking s < t < T and using the martingale property we deduce

that Xt−Xs is independent of Fs and has Fourier transform E(exp(i〈ξ,Xt−Xs〉) =
exp(−|ξ|2(t− s)/2). Hence X is indeed a Brownian motion. �

Now that we got that taken care of we will now discuss the Burkholder-Davis-
Gundy inequalities (BGD).

2. Burkholder-Davis-Gundy inequalities

In a previous talk we have seen (in the Hilbert space formalism for stochastic
integration of continuous semi-martingales) that the normes ‖‖1 and ‖‖2 defined on
the space of L2-bounded continuous martingales M vanishing at 0 by

‖M‖1 = E[M2
∞]1/2 = E[〈M,M〉∞]1/2 and ‖M‖2 = E[(M∗

∞)2]1/2

are equivalent by Doob’s inequality. Only first one defines a Hilbert space structure
and we have ‖.‖1 ≤ ‖.‖2 ≤ 2 ‖.‖1 . It turns out that this fact is a special case of
what’s called the BDG inequalities which will occupy us in this section.

2.1. Statement and consequences.

Theorem 2.1. For any p > 0 there exist two constants cp and Cp such that for any
continuous local martingale M vanishing at 0 we have

cpE[〈M,M〉p/2∞ ] ≤ E[(M∗
∞)p] ≤ CpE[〈M,M〉p/2∞ ]

Let’s call Hp the space of continuous local martingales vanishing at 0 such that
M∗
∞ is in Lp. The above theorem gives an equivalence of norms on this space. The

elements of Hp are true martingales for p ≥ 1 and for p > 1 they are bounded in Lp.
The latter fact is however not true for p = 1 because the space H1 i actually smaller
than the space of continuous L1-bounded martingales (to be checked in Revuz and
Yor exercise 3.15).

By stopping at a time stopping time T , Theorem 2.1 yileds the following result
which is simple to understand yet very important in applications:

Corollary 2.2. For a stopping time T one has

cpE[〈M,M〉p/2T ] ≤ E[(M∗
T )p] ≤ CpE[〈M,M〉p/2T ]

In general for bounded predictable process H we have

cpE

[(∫ T

0

H2
sd〈M,M〉s

)p/2
]
≤ E

[
sup
t≤T

∣∣∣∣∫ T

0

HsdMs

∣∣∣∣p] ≤ CpE

[(∫ T

0

H2
sd〈M,M〉s

)p/2
]

One can even work with the integral of a predictable process against M and get a
more general inequality. We refer to [RY13] for more details.

The proof of Theorem 2.1 will be broken down to several steps and for that we
follow the argument presented in [RY13] which we will expand when needed. The
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first step is to show the right-hand-side inequlity for p ≥ 2 and the left-hand-side
inequality for p ≥ 4. We will then show that these two result suffice by reducing the
theorem with a domination technique which is the purpose of the next subsection.

2.2. A proof.

In the arguments presented here we will write ap for a constant that depends only
on p, which we might change from line to line, since we are only interested in bounding
quantities.

Proposition 2.3. For p ≥ 2 there exists a constant Cp such that E[(M∗
∞)p] ≤

CpE[〈M,M〉p/2∞ ]

As we have seen in previous talk, by stopping we can reduce to the case whereM is
a bounded martingale that vanishes at 0. The proof is very clean using Itô’s formula.

Proof. The map f : x 7→ |x|p is twice differentiable with f ′(x) = sgn(x)p|x|p−1 and
f ′′(x) = p(p− 1)|x|p−2. Applying Itô’s formula we get:

Mp
∞ =

∫ ∞
0

sgn(Ms)p|Ms|p−1dMs +
1

2

∫ ∞
0

p(p− 1)|Ms|p−2d〈M,M〉s

Taking the expectation of the this equation we get

E[|M∞|p] =
p(p− 1)

2
E
[∫ ∞

0

|Ms|p−2d〈M,M〉s
]

≤ p(p− 1)

2
E
[
|M∗
∞|p−2〈M,M〉∞

]
Hölder’s inequality with exponents p

p−2 and p
2
give us the following

E
[
|M∗
∞|p−2〈M,M〉∞

]
≤ E [|M∗

∞|p]
(p−2)/p E

[
〈M,M〉p/2∞

]p/2
Now we deduce that

E[|M∞|p] ≤ E [|M∗
∞|p]

(p−2)/p E
[
〈M,M〉p/2∞

]p/2
Doob’s maximal inequality gives us E[|M∗

∞|p] ≤
(

p
p−1

)p
E [|M∞|p] so that combin-

ing this with the last inequality would give

E[|M∗
∞|p] ≤ CpE

[
〈M,M〉p/2∞

]
�

Notice that the condition p ≥ 2 is crucial since we need differentiability to apply
Itô ’s formula. The next result is the left-hand-side inequality for p ≥ 4.

Proposition 2.4. For p ≥ 4 there exists a constant Cp such that E[(M∗
∞)p] ≤

CpE[〈M,M〉p/2∞ ]

Again we reduce to the case whereM is bounded by stopping. The proof uses Itô’s
formula once more.
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Proof. The convexity of x 7→ |x|p gives |x+y|p ≤ ap(|x|p + |y|p) for a certain constant
ap. Now comes the time to deploy Itô’s formula and we write

M2
t = 2

∫ t

0

MsdMs + 〈M,M〉t

By rearanging terms and using the converxity (and sending t to ∞ since M is
bounded) inequality above we deduce

E
[
〈M,M〉p/2∞

]
≤ ap

(
E[(M∗

∞)p] + E

[∣∣∣∣∫ ∞
0

MsdMs

∣∣∣∣p/2
])

Proposition 2.3 applies to the local martingale
∫ t

0
MsdMs so we get the following

E
[
〈M,M〉p/2∞

]
≤ ap

(
E[(M∗

∞)p] + E

[∣∣∣∣∫ ∞
0

M2
s d〈M,M〉s

∣∣∣∣p/4
])

≤ ap
(
E[(M∗

∞)p] + E
[
(M∗
∞)p/2〈M,M〉p/4∞

])
≤ ap

(
E[(M∗

∞)p] +
(
E [(M∗

∞)p]E
[
〈M,M〉p/2∞

])1/2)

Set A =
(
E
[
〈M,M〉p/2∞

])1/2
and B = (E[(M∗

∞)p])1/2 so that that above inequality
can be rewritten as

A2 − apAB − apB2 ≤ 0

This means that A is less than the positive root of the polynomial X2−apyX−apy2
which is of the form apy (the constant ap may have changed!!). So that A ≤ apB
which proves the desired result. �

Notice that we needed p ≥ 4 becasue we applied Proposition 2.3 with p/2. Now
we see that the inequalities hold for p ≥ 4 and that they are at least plausible for
every p. The next step is to reduce Theorem 2.1 so that these two results suffice.
This reduction is done by a domination technique which we will now explain.

Definition 2.5. A positive adapted right-continuous process X is dominated by an
increasing process A if for any bounded stopping time T one has

E[XT |F0] ≤ E[AT |F0]

First we start with the following useful lemma

Lemma 2.6. If X is dominated by A and A is continuous then for x, y > 0 we have

P(X∗∞ > x,A∞ ≤ y) ≤ 1

x
E[A∞ ∧ y]

where X∗∞ = supsXs

Proof. It suffices to prove the inequality in the case P(A0 ≤ y) > 0 (otherwise it obvi-
ously holds since A is increasing) and actually we can throw away the event (A0 > y)
by conditionning on its complement so we reduce to the case where P(A0 ≤ y) = 1
(this is by replacing by the conditional probability under which the domination hy-
pothesis still holds).
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We reduce the problem further using Fatou’s lemma to the following: it is enough
to show that

P(X∗n > x,An ≤ y) ≤ 1

x
E[A∞ ∧ y]

Notice that working on [0, n] is the same as working on [0,∞] and assuming that
X∞ exists and that the domination is true for any stopping time bounded or not (by
a simple time change).

Now we define R = inf{t : At > y} and S = inf{t : Xt > x} where in both
definition the infimum of the empty set is +∞. Since A is increasing we have {A∞ ≤
y} = {R =∞} so that

P(X∗∞ > x;A∞ ≤ y) = P(X∗∞ > x;R =∞)

≤ P(XS ≥ x; (S <∞) ∩ (R =∞))

≤ P(XS∧R ≥ x)

≤ 1

x
E[XS∧R] ≤ 1

x
E[AS∧R] ≤ 1

x
E[A∞ ∧ y]

�

Now we present the final result that will allow us to reduce theorem 2.1 to the two
results already shown.

Proposition 2.7. Unde the conditions of Lemma 2.6 for any 0 < k < 1 we have

E[(X∗∞)k] ≤ 2− k
1− k

E[Ak
∞]

The proof is not very hard and we can already see how this can help us finish the
proof of theorem 2.1.

Proof. Let F be a continuous increasing function from R+ into R+ with F (0) = 0.
Fubini’s theorem combined with Lemma 2.6 give us

E[F (X∗∞)] = E
[∫ ∞

0

1X∗∞>xdF (x)

]
≤
∫ ∞
0

(P(X∗∞ > x,A∞ ≤ x) + P(A∞ > x)) dF (x)

≤
∫ ∞
0

(
1

x
E(A∞ ∧ x) + P(A∞ > x)

)
dF (x)

≤
∫ ∞
0

(
1

x
E(A∞1A∞≤x) + 2P(A∞ > x)

)
dF (x)

= 2E[F (A∞)] + E[A∞

∫ ∞
A∞

1

x
dF (x)] = E[F̃ (A∞)]

where F̃ (x) = 2F (x) + x
∫∞
x

1
u
dF (u). With F (x) = xk we have F̃ (x) = 2−k

1−kx
k

which finishes the proof. �

Notice that for k ≥ 1, F̃ ≡ ∞ so that the proposition above becomes useless. It can
be shown that for k = 1 there is no universal constant c such that E[X∗∞] ≤ cE[A∞].
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Now we procede to show how all these results imply theorem 2.1.

First let X = (M∗)2 and A = C2〈M,M〉 where C2 is a suitable constant such that
E[XT ] ≤ E[AT ] for any bounded stopping time (Such a constant exists thanks to
Proposition 2.3). Then we deduce that for any k ∈ (0, 1) we have

E[(M∗)2k∞] ≤ 2− k
1− k

Ck
2E[〈M,M〉k∞]

So we just showed that for p ∈ (0, 2) we have

E[(M∗)p∞] ≤ CpE[〈M,M〉p/2∞ ]

Now for the other inequality we consider the processes X = 〈M,M〉2 and A =
C4(M

∗)4. Proposition 2.4 shows that A dominates X in the sense of Definition 2.5.
Then again applying the last result we get for k ∈ (0, 1)

E[〈M,M〉2k∞] ≤ 2− k
1− k

Ck
4E[(M∗

∞)4k]

taking p = 4k we have just seen that

cpE[〈M,M〉p/2∞ ] ≤ E[(M∗
∞)p]

So the proof of theorem 2.1 is complete.

As a summary of the technique that is used: Itô’s formula allowed us to show the
two inequalities for most values of p and this domonation technique allowed us to
extend the result to all values of p > 0. It should be mentioned that this is a very
powerful principal in analysis that allows to show these types of statements and is
very useful to have in your toolkit.

2.3. Proof via time-change representation. We notes that other proofs of
BDG exist and in this section we give a sketch of a proof using the respresentation
by time-change that we have seen in the last talk.

As we’ve seen before a continuous local martingale vanishing at 0 admits a time
change under which it becomes a brownian motion. So that proving the BGD in-
equalities for Brownian motion will allow us to deduce the result for any continuous
local martingale vanishing at 0. We shall not discuss this proof here, but instead
refer to [RY13] for an alternative proof in the special case of Brownian motion.

3. Conformal martingales and planar brownian motion

In this section we study the two-dimensional local martingales in which the planar
Brownian motion is a special case. For this purpose we use the complex notation.
For instance the planar Brownian motion will be denoted B = B(1) + iB(2) where
B(1), B(2) are independent Brownian motions in one dimension. A complex local mar-
tingale in a process Z = X + iY where X, Y are real local martingales.
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Proposition 3.1. If Z is a continuous complex martingale, there exists a unique con-
tinuous complex process of finite variation vanishing at 0 denoted by 〈Z,Z〉 such that
Z2 − 〈Z,Z〉 is a complex local martingale. Furthermore the following are equivalent

(1) Z2 is a local martingale
(2) 〈Z,Z, 〉 = 0
(3) 〈X,X〉 = 〈Y, Y 〉 and 〈X, Y 〉 = 0 .

Proof. For the existence it suffices to define the braket by C-linearity as

〈Z,Z〉 = 〈X,X〉 − 〈Y, Y 〉+ 2i〈X, Y 〉
It is easy to check that this process satisfies all the desired conditions. For unique-

ness we use the fact that a continuous martingale with fintie variation is constant. �

A local martingale satisfying the equivalent conditions above is called a conformal
local martingale. The planar Brownian motion for instance is a conformal local mar-
tingale and if H is a complex valued locally bounded predictable process and Z a
conformal local martingale then Ut =

∫ t

0
HsdZs is a conformal local martingale.

We recall the following differential operators from complex analysis

∂

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)
and

∂

∂z
=

1

2

(
∂

∂x
+ i

∂

∂y

)
and that a differentiable function F : C → C (in the sense of real coordiantes) is

holomorphic if and only if ∂F
∂z

= 0 in which case the C-derivative is F ′ = ∂F
∂z
.

We have a similar looking result to Itô’s formula in the complex case for conformal
local martingales.

Proposition 3.2. If Z is a conformal local martingale and F is a complex function
on C which is twice differentiable (as a function of two real coordinates) then

F (Zt) = F (Z0) +

∫ t

0

∂F

∂z
(Zs)dZs +

∫ t

0

∂F

∂z
(Zs)dZs +

1

4

∫ t

0

∆F (Zs)d〈Zs, Z〉s
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