BURKHOLDER-DAVIS-GUNDY INEQUALITIES

YASSINE EL MAAZOUZ

Abstract

The aim of these notes is to present the argument establishing the Burkholder-Davis-Gundy inequalities

Contents

1 Lévy's characterization of Brownian motion 1
2 Burkholder-Davis-Gundy inequalities 2
$2.1 \quad$ Statement and consequences 2
2.2 A proof 3
2.3 Proof via time-change representation 6
3 Conformal martingales and planar brownian motion 6

1. Lévy's characterization of Brownian motion

In this section we tend to some unfinished business from the last sessions: Lévy's charachterization of Brownian motion. At this points this should be a very fast and clear argument thanks to the machinery we have developped (Ito's formula).

Theorem 1.1. (Lévy) X be a continuous $\left(\mathcal{F}_{t}\right)$-adapted d-dimensional process with $X_{0}=0$. The following are equivalent
(1) X is an $\left(\mathcal{F}_{t}\right)$-Brownian motion.
(2) X is a continuous local martingale and $\left\langle X^{i}, X^{j}\right\rangle_{t}=\delta_{i, j} t$.
(3) X is a continuous local martingale and for every choice of functions $f_{1}, \ldots, f_{d} \in$ $L^{2}\left(\mathbb{R}_{+}\right)$the process

$$
\mathcal{E}_{t}=\exp \left(i \sum_{k=1}^{d} \int_{0}^{t} f_{k}(s) d X_{s}^{k}+\frac{1}{2} \sum_{k=1}^{d} \int_{0}^{t} f_{k}^{2}(s) d s\right)
$$

is a complex martingale.
Proof. The fact that $(1) \Longrightarrow(2)$ is clear. For $(2) \Longrightarrow$ (3) we use the exponential martingale with the complex coefficient $\lambda=i$ on the local martingale $M_{t}=\sum_{k=1}^{d} \int_{0}^{t} f_{k}(s) d X_{s}^{k}$ we get that $\mathcal{E}_{t}=\exp \left(i M_{t}-\frac{i^{2}}{2}\langle M, M\rangle_{t}\right)$ is a local martingale. But since \mathcal{E} is bounded it is a complex martingale.

Now assume that (3) holds, then by chooseing $\left.f_{k}=\xi 1_{[} 0, T\right]$ for a certain $\xi \in \mathbb{R}^{d}$ and $T>0$ we get

$$
\left.\mathcal{E}_{t}=\exp \left(i\left\langle\xi, X_{t \wedge T}\right\rangle+\frac{1}{2}|\xi|^{2} t \wedge T\right)\right)
$$

is a maringale. Taking $s<t<T$ and using the martingale property we deduce that $X_{t}-X_{s}$ is independent of \mathcal{F}_{s} and has Fourier transform $\mathbb{E}\left(\exp \left(i\left\langle\xi, X_{t}-X_{s}\right\rangle\right)=\right.$ $\exp \left(-|\xi|^{2}(t-s) / 2\right)$. Hence X is indeed a Brownian motion.

Now that we got that taken care of we will now discuss the Burkholder-DavisGundy inequalities (BGD).

2. Burkholder-Davis-Gundy inequalities

In a previous talk we have seen (in the Hilbert space formalism for stochastic integration of continuous semi-martingales) that the normes $\left\|\left\|\|_{1} \text { and }\right\|\right\|_{2}$ defined on the space of L^{2}-bounded continuous martingales M vanishing at 0 by

$$
\|M\|_{1}=\mathbb{E}\left[M_{\infty}^{2}\right]^{1 / 2}=\mathbb{E}\left[\langle M, M\rangle_{\infty}\right]^{1 / 2} \text { and }\|M\|_{2}=\mathbb{E}\left[\left(M_{\infty}^{*}\right)^{2}\right]^{1 / 2}
$$

are equivalent by Doob's inequality. Only first one defines a Hilbert space structure and we have $\|\cdot\|_{1} \leq\|\cdot\|_{2} \leq 2\|\cdot\|_{1}$. It turns out that this fact is a special case of what's called the BDG inequalities which will occupy us in this section.

2.1. Statement and consequences.

Theorem 2.1. For any $p>0$ there exist two constants c_{p} and C_{p} such that for any continuous local martingale M vanishing at 0 we have

$$
c_{p} \mathbb{E}\left[\langle M, M\rangle_{\infty}^{p / 2}\right] \leq \mathbb{E}\left[\left(M_{\infty}^{*}\right)^{p}\right] \leq C_{p} \mathbb{E}\left[\langle M, M\rangle_{\infty}^{p / 2}\right]
$$

Let's call \mathcal{H}^{p} the space of continuous local martingales vanishing at 0 such that M_{∞}^{*} is in L^{p}. The above theorem gives an equivalence of norms on this space. The elements of \mathcal{H}^{p} are true martingales for $p \geq 1$ and for $p>1$ they are bounded in L^{p}. The latter fact is however not true for $p=1$ because the space \mathcal{H}^{1} i actually smaller than the space of continuous L^{1}-bounded martingales (to be checked in Revuz and Yor exercise 3.15).

By stopping at a time stopping time T, Theorem 2.1 yileds the following result which is simple to understand yet very important in applications:
Corollary 2.2. For a stopping time T one has

$$
c_{p} \mathbb{E}\left[\langle M, M\rangle_{T}^{p / 2}\right] \leq \mathbb{E}\left[\left(M_{T}^{*}\right)^{p}\right] \leq C_{p} \mathbb{E}\left[\langle M, M\rangle_{T}^{p / 2}\right]
$$

In general for bounded predictable process H we have

$$
c_{p} \mathbb{E}\left[\left(\int_{0}^{T} H_{s}^{2} d\langle M, M\rangle_{s}\right)^{p / 2}\right] \leq \mathbb{E}\left[\sup _{t \leq T}\left|\int_{0}^{T} H_{s} d M_{s}\right|^{p}\right] \leq C_{p} \mathbb{E}\left[\left(\int_{0}^{T} H_{s}^{2} d\langle M, M\rangle_{s}\right)^{p / 2}\right]
$$

One can even work with the integral of a predictable process against M and get a more general inequality. We refer to [RY13] for more details.

The proof of Theorem 2.1 will be broken down to several steps and for that we follow the argument presented in [RY13] which we will expand when needed. The
first step is to show the right-hand-side inequlity for $p \geq 2$ and the left-hand-side inequality for $p \geq 4$. We will then show that these two result suffice by reducing the theorem with a domination technique which is the purpose of the next subsection.

2.2. A proof.

In the arguments presented here we will write a_{p} for a constant that depends only on p, which we might change from line to line, since we are only interested in bounding quantities.

Proposition 2.3. For $p \geq 2$ there exists a constant C_{p} such that $\mathbb{E}\left[\left(M_{\infty}^{*}\right)^{p}\right] \leq$ $C_{p} \mathbb{E}\left[\langle M, M\rangle_{\infty}^{p / 2}\right]$

As we have seen in previous talk, by stopping we can reduce to the case where M is a bounded martingale that vanishes at 0 . The proof is very clean using Itô's formula.

Proof. The map $f: x \mapsto|x|^{p}$ is twice differentiable with $f^{\prime}(x)=\operatorname{sgn}(x) p|x|^{p-1}$ and $f^{\prime \prime}(x)=p(p-1)|x|^{p-2}$. Applying Itô's formula we get:

$$
M_{\infty}^{p}=\int_{0}^{\infty} \operatorname{sgn}\left(M_{s}\right) p\left|M_{s}\right|^{p-1} d M_{s}+\frac{1}{2} \int_{0}^{\infty} p(p-1)\left|M_{s}\right|^{p-2} d\langle M, M\rangle_{s}
$$

Taking the expectation of the this equation we get

$$
\begin{aligned}
\mathbb{E}\left[\left|M_{\infty}\right|^{p}\right] & =\frac{p(p-1)}{2} \mathbb{E}\left[\int_{0}^{\infty}\left|M_{s}\right|^{p-2} d\langle M, M\rangle_{s}\right] \\
& \leq \frac{p(p-1)}{2} \mathbb{E}\left[\left|M_{\infty}^{*}\right|^{p-2}\langle M, M\rangle_{\infty}\right]
\end{aligned}
$$

Hölder's inequality with exponents $\frac{p}{p-2}$ and $\frac{p}{2}$ give us the following

$$
\mathbb{E}\left[\left|M_{\infty}^{*}\right|^{p-2}\langle M, M\rangle_{\infty}\right] \leq \mathbb{E}\left[\left|M_{\infty}^{*}\right|^{p}\right]^{(p-2) / p} \mathbb{E}\left[\langle M, M\rangle_{\infty}^{p / 2}\right]^{p / 2}
$$

Now we deduce that

$$
\mathbb{E}\left[\left|M_{\infty}\right|^{p}\right] \leq \mathbb{E}\left[\left|M_{\infty}^{*}\right|^{p}\right]^{(p-2) / p} \mathbb{E}\left[\langle M, M\rangle_{\infty}^{p / 2}\right]^{p / 2}
$$

Doob's maximal inequality gives us $E\left[\left|M_{\infty}^{*}\right|^{p}\right] \leq\left(\frac{p}{p-1}\right)^{p} \mathbb{E}\left[\left|M_{\infty}\right|^{p}\right]$ so that combining this with the last inequality would give

$$
\mathbb{E}\left[\left|M_{\infty}^{*}\right|^{p}\right] \leq C_{p} \mathbb{E}\left[\langle M, M\rangle_{\infty}^{p / 2}\right]
$$

Notice that the condition $p \geq 2$ is crucial since we need differentiability to apply Itô 's formula. The next result is the left-hand-side inequality for $p \geq 4$.
Proposition 2.4. For $p \geq 4$ there exists a constant C_{p} such that $\mathbb{E}\left[\left(M_{\infty}^{*}\right)^{p}\right] \leq$ $C_{p} \mathbb{E}\left[\langle M, M\rangle_{\infty}^{p / 2}\right]$

Again we reduce to the case where M is bounded by stopping. The proof uses Itô's formula once more.

Proof. The convexity of $x \mapsto|x|^{p}$ gives $|x+y|^{p} \leq a_{p}\left(|x|^{p}+|y|^{p}\right)$ for a certain constant a_{p}. Now comes the time to deploy Itô's formula and we write

$$
M_{t}^{2}=2 \int_{0}^{t} M_{s} d M_{s}+\langle M, M\rangle_{t}
$$

By rearanging terms and using the converxity (and sending t to ∞ since M is bounded) inequality above we deduce

$$
\mathbb{E}\left[\langle M, M\rangle_{\infty}^{p / 2}\right] \leq a_{p}\left(\mathbb{E}\left[\left(M_{\infty}^{*}\right)^{p}\right]+\mathbb{E}\left[\left|\int_{0}^{\infty} M_{s} d M_{s}\right|^{p / 2}\right]\right)
$$

Proposition 2.3 applies to the local martingale $\int_{0}^{t} M_{s} d M_{s}$ so we get the following

$$
\begin{aligned}
\mathbb{E}\left[\langle M, M\rangle_{\infty}^{p / 2}\right] & \leq a_{p}\left(\mathbb{E}\left[\left(M_{\infty}^{*}\right)^{p}\right]+\mathbb{E}\left[\left|\int_{0}^{\infty} M_{s}^{2} d\langle M, M\rangle_{s}\right|^{p / 4}\right]\right) \\
& \leq a_{p}\left(\mathbb{E}\left[\left(M_{\infty}^{*}\right)^{p}\right]+\mathbb{E}\left[\left(M_{\infty}^{*}\right)^{p / 2}\langle M, M\rangle_{\infty}^{p / 4}\right]\right) \\
& \leq a_{p}\left(\mathbb{E}\left[\left(M_{\infty}^{*}\right)^{p}\right]+\left(\mathbb{E}\left[\left(M_{\infty}^{*}\right)^{p}\right] \mathbb{E}\left[\langle M, M\rangle_{\infty}^{p / 2}\right]\right)^{1 / 2}\right)
\end{aligned}
$$

Set $A=\left(\mathbb{E}\left[\langle M, M\rangle_{\infty}^{p / 2}\right]\right)^{1 / 2}$ and $B=\left(\mathbb{E}\left[\left(M_{\infty}^{*}\right)^{p}\right]\right)^{1 / 2}$ so that that above inequality can be rewritten as

$$
A^{2}-a_{p} A B-a_{p} B^{2} \leq 0
$$

This means that A is less than the positive root of the polynomial $X^{2}-a_{p} y X-a_{p} y^{2}$ which is of the form $a_{p} y$ (the constant a_{p} may have changed!!). So that $A \leq a_{p} B$ which proves the desired result.

Notice that we needed $p \geq 4$ becasue we applied Proposition 2.3 with $p / 2$. Now we see that the inequalities hold for $p \geq 4$ and that they are at least plausible for every p. The next step is to reduce Theorem 2.1 so that these two results suffice. This reduction is done by a domination technique which we will now explain.

Definition 2.5. A positive adapted right-continuous process X is dominated by an increasing process A if for any bounded stopping time T one has

$$
\mathbb{E}\left[X_{T} \mid \mathcal{F}_{0}\right] \leq \mathbb{E}\left[A_{T} \mid \mathcal{F}_{0}\right]
$$

First we start with the following useful lemma
Lemma 2.6. If X is dominated by A and A is continuous then for $x, y>0$ we have

$$
\mathbb{P}\left(X_{\infty}^{*}>x, A_{\infty} \leq y\right) \leq \frac{1}{x} \mathbb{E}\left[A_{\infty} \wedge y\right]
$$

where $X_{\infty}^{*}=\sup _{s} X_{s}$
Proof. It suffices to prove the inequality in the case $\mathbb{P}\left(A_{0} \leq y\right)>0$ (otherwise it obviously holds since A is increasing) and actually we can throw away the event ($A_{0}>y$) by conditionning on its complement so we reduce to the case where $\mathbb{P}\left(A_{0} \leq y\right)=1$ (this is by replacing by the conditional probability under which the domination hypothesis still holds).

We reduce the problem further using Fatou's lemma to the following: it is enough to show that

$$
\mathbb{P}\left(X_{n}^{*}>x, A_{n} \leq y\right) \leq \frac{1}{x} E\left[A_{\infty} \wedge y\right]
$$

Notice that working on $[0, n]$ is the same as working on $[0, \infty]$ and assuming that X_{∞} exists and that the domination is true for any stopping time bounded or not (by a simple time change).

Now we define $R=\inf \left\{t: A_{t}>y\right\}$ and $S=\inf \left\{t: X_{t}>x\right\}$ where in both definition the infimum of the empty set is $+\infty$. Since A is increasing we have $\left\{A_{\infty} \leq\right.$ $y\}=\{R=\infty\}$ so that

$$
\begin{aligned}
\mathbb{P}\left(X_{\infty}^{*}>x ; A_{\infty} \leq y\right) & =\mathbb{P}\left(X_{\infty}^{*}>x ; R=\infty\right) \\
& \leq \mathbb{P}\left(X_{S} \geq x ;(S<\infty) \cap(R=\infty)\right) \\
& \leq \mathbb{P}\left(X_{S \wedge R} \geq x\right) \\
& \leq \frac{1}{x} \mathbb{E}\left[X_{S \wedge R}\right] \leq \frac{1}{x} \mathbb{E}\left[A_{S \wedge R}\right] \leq \frac{1}{x} \mathbb{E}\left[A_{\infty} \wedge y\right]
\end{aligned}
$$

Now we present the final result that will allow us to reduce theorem 2.1 to the two results already shown.

Proposition 2.7. Unde the conditions of Lemma 2. 6 for any $0<k<1$ we have

$$
\mathbb{E}\left[\left(X_{\infty}^{*}\right)^{k}\right] \leq \frac{2-k}{1-k} \mathbb{E}\left[A_{\infty}^{k}\right]
$$

The proof is not very hard and we can already see how this can help us finish the proof of theorem 2.1.
Proof. Let F be a continuous increasing function from \mathbb{R}_{+}into \mathbb{R}_{+}with $F(0)=0$. Fubini's theorem combined with Lemma 2.6 give us

$$
\begin{aligned}
\mathbb{E}\left[F\left(X_{\infty}^{*}\right)\right] & =\mathbb{E}\left[\int_{0}^{\infty} 1_{X_{\infty}^{*}>x} d F(x)\right] \\
& \leq \int_{0}^{\infty}\left(\mathbb{P}\left(X_{\infty}^{*}>x, A_{\infty} \leq x\right)+\mathbb{P}\left(A_{\infty}>x\right)\right) d F(x) \\
& \leq \int_{0}^{\infty}\left(\frac{1}{x} \mathbb{E}\left(A_{\infty} \wedge x\right)+\mathbb{P}\left(A_{\infty}>x\right)\right) d F(x) \\
& \leq \int_{0}^{\infty}\left(\frac{1}{x} \mathbb{E}\left(A_{\infty} 1_{A_{\infty} \leq x}\right)+2 \mathbb{P}\left(A_{\infty}>x\right)\right) d F(x) \\
& =2 \mathbb{E}\left[F\left(A_{\infty}\right)\right]+\mathbb{E}\left[A_{\infty} \int_{A_{\infty}}^{\infty} \frac{1}{x} d F(x)\right]=\mathbb{E}\left[\tilde{F}\left(A_{\infty}\right)\right]
\end{aligned}
$$

where $\tilde{F}(x)=2 F(x)+x \int_{x}^{\infty} \frac{1}{u} d F(u)$. With $F(x)=x^{k}$ we have $\tilde{F}(x)=\frac{2-k}{1-k} x^{k}$ which finishes the proof.

Notice that for $k \geq 1, \tilde{F} \equiv \infty$ so that the proposition above becomes useless. It can be shown that for $k=1$ there is no universal constant c such that $\mathbb{E}\left[X_{\infty}^{*}\right] \leq c \mathbb{E}\left[A_{\infty}\right]$.

Now we procede to show how all these results imply theorem 2.1.
First let $X=\left(M^{*}\right)^{2}$ and $A=C_{2}\langle M, M\rangle$ where C_{2} is a suitable constant such that $\mathbb{E}\left[X_{T}\right] \leq \mathbb{E}\left[A_{T}\right]$ for any bounded stopping time (Such a constant exists thanks to Proposition 2.3). Then we deduce that for any $k \in(0,1)$ we have

$$
\mathbb{E}\left[\left(M^{*}\right)_{\infty}^{2 k}\right] \leq \frac{2-k}{1-k} C_{2}^{k} \mathbb{E}\left[\langle M, M\rangle_{\infty}^{k}\right]
$$

So we just showed that for $p \in(0,2)$ we have

$$
\mathbb{E}\left[\left(M^{*}\right)_{\infty}^{p}\right] \leq C_{p} \mathbb{E}\left[\langle M, M\rangle_{\infty}^{p / 2}\right]
$$

Now for the other inequality we consider the processes $X=\langle M, M\rangle^{2}$ and $A=$ $C_{4}\left(M^{*}\right)^{4}$. Proposition 2.4 shows that A dominates X in the sense of Definition 2.5. Then again applying the last result we get for $k \in(0,1)$

$$
\mathbb{E}\left[\langle M, M\rangle_{\infty}^{2 k}\right] \leq \frac{2-k}{1-k} C_{4}^{k} \mathbb{E}\left[\left(M_{\infty}^{*}\right)^{4 k}\right]
$$

taking $p=4 k$ we have just seen that

$$
c_{p} \mathbb{E}\left[\langle M, M\rangle_{\infty}^{p / 2}\right] \leq \mathbb{E}\left[\left(M_{\infty}^{*}\right)^{p}\right]
$$

So the proof of theorem 2.1 is complete.
As a summary of the technique that is used: Itô's formula allowed us to show the two inequalities for most values of p and this domonation technique allowed us to extend the result to all values of $p>0$. It should be mentioned that this is a very powerful principal in analysis that allows to show these types of statements and is very useful to have in your toolkit.
2.3. Proof via time-change representation. We notes that other proofs of BDG exist and in this section we give a sketch of a proof using the respresentation by time-change that we have seen in the last talk.

As we've seen before a continuous local martingale vanishing at 0 admits a time change under which it becomes a brownian motion. So that proving the BGD inequalities for Brownian motion will allow us to deduce the result for any continuous local martingale vanishing at 0 . We shall not discuss this proof here, but instead refer to [RY13] for an alternative proof in the special case of Brownian motion.

3. Conformal martingales and planar brownian motion

In this section we study the two-dimensional local martingales in which the planar Brownian motion is a special case. For this purpose we use the complex notation. For instance the planar Brownian motion will be denoted $B=B^{(1)}+i B^{(2)}$ where $B^{(1)}, B^{(2)}$ are independent Brownian motions in one dimension. A complex local martingale in a process $Z=X+i Y$ where X, Y are real local martingales.

Proposition 3.1. If Z is a continuous complex martingale, there exists a unique continuous complex process of finite variation vanishing at 0 denoted by $\langle Z, Z\rangle$ such that $Z^{2}-\langle Z, Z\rangle$ is a complex local martingale. Furthermore the following are equivalent
(1) Z^{2} is a local martingale
(2) $\langle Z, Z\rangle=$,
(3) $\langle X, X\rangle=\langle Y, Y\rangle$ and $\langle X, Y\rangle=0$.

Proof. For the existence it suffices to define the braket by \mathbb{C}-linearity as

$$
\langle Z, Z\rangle=\langle X, X\rangle-\langle Y, Y\rangle+2 i\langle X, Y\rangle
$$

It is easy to check that this process satisfies all the desired conditions. For uniqueness we use the fact that a continuous martingale with fintie variation is constant.

A local martingale satisfying the equivalent conditions above is called a conformal local martingale. The planar Brownian motion for instance is a conformal local martingale and if H is a complex valued locally bounded predictable process and Z a conformal local martingale then $U_{t}=\int_{0}^{t} H_{s} d Z_{s}$ is a conformal local martingale.

We recall the following differential operators from complex analysis

$$
\frac{\partial}{\partial z}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right) \text { and } \frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)
$$

and that a differentiable function $F: \mathbb{C} \rightarrow \mathbb{C}$ (in the sense of real coordiantes) is holomorphic if and only if $\frac{\partial F}{\partial \bar{z}}=0$ in which case the \mathbb{C}-derivative is $F^{\prime}=\frac{\partial F}{\partial z}$.

We have a similar looking result to Itô's formula in the complex case for conformal local martingales.

Proposition 3.2. If Z is a conformal local martingale and F is a complex function on \mathbb{C} which is twice differentiable (as a function of two real coordinates) then

$$
F\left(Z_{t}\right)=F\left(Z_{0}\right)+\int_{0}^{t} \frac{\partial F}{\partial z}\left(Z_{s}\right) d Z_{s}+\int_{0}^{t} \frac{\partial F}{\partial \bar{z}}\left(Z_{s}\right) d \bar{Z}_{s}+\frac{1}{4} \int_{0}^{t} \Delta F\left(Z_{s}\right) d\left\langle Z_{s}, \bar{Z}\right\rangle_{s}
$$

References

[RY13] Daniel Revuz and Marc Yor. Continuous martingales and Brownian motion, volume 293. Springer Science \& Business Media, 2013.
U.C. Berkeley, Department of statistics, 335 Evans Hall Berkeley, CA 94720 USA

Email address: yassine.el-maazouz@berkeley.edu

