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Abstract. The main goal of this paper is to present Choquet’s representation
theorem and other similar results and to give a few examples of some interesting
applications. We are not going to give proofs for every result (altough we give
references to these) but we will rather focus on understanding the statements and
proving the central theorems.

1. Introduction and background

A very powerful idea in convex and polyhedral geometry is the idea of representa-
tion (Minkowski’s theorem): a point in a compact convex body in a finite dimensional
vector space over R can be represented as barycentric combination of finitely many
extreme points. This sort of result is very useful in many fields from convex opti-
mization (especially linear programming) to probability theory which is going to be
our main concern in what follows. It is then useful to start by restating the above
result in probabilistic terms and we start with our first definition.

Definition 1.1. Let X be a non-empty compact subset of a locally convex space E
and µ a probability measure on X. A point x in E is said to be represented by µ if
we have f(x) = µ(f) :=

∫
X
fdµ for any linear function f on E. In this case x is also

called the barycentrer of µ or the resultant of µ.

With this definition, Minkowski theorem translates to: a point in a compact convex
body in a finite dimensional vector space over R can be represented by a probability
measure with finite support in the the set of extreme points. There is a sharper
version of this theorem due to Caratheodory which give a sharp upper bound on the
number of extreme points that represent x. The use of a probability measure in this
simple case seems very artificial but as we shall see later it will become a lot more
natural.

The locally convex condition on E in definition 1.1 ensures that there are enough
functionals in E∗ so that at most one point can be represented by a probability
measure µ. Notice that finding a measure that represents a point x is trivial since
the Dirac measure δx does the job but the interesting part is can we find such a
measure that is supported on the extreme points. Formally the problem at hand is
the following:

Problem 1.2. Given a compact convex subset X of a locally convex space E, and a
point x ∈ X, does there exist a probability measure µ on X supported by the extreme
points of X which represents x? In case this measure exists is it unique?

Choquet [CM63] proved that the existence question has a positive answer in the
case where X is metrizable while the uniqueness depends on the geometry of X.
Allowing more general measures than Borel measures, Bishop-de Leeuw [BL59] have
shown the existence of a representing measure without additional restrictions on X.

1



2 YASSINE EL MAAZOUZ

But before we get to see the theorems of Choquet and Bishop-de Leeuw we shall first
translate the Riesz representation and the Krein-Milman theorems into our formalism
and we will see later how Choquet and Bishop-de Leeuw theorems generalize the
Krein-Milman theorem.

Let Y be a compact Hausdorff space and C(Y ) the Banach space of real valued
continuous functions on Y (endowed with the supremum norm). Now let X be the set
of continuous linear functions L on C(Y ) such that L(1) = 1 where 1 is the constant
function with value 1 on Y . The set X is compact convex in the locally convex space
E = C(Y )∗ (the dual space of C(Y ), with weak* topology).

Theorem 1.3 (Riesz representation). For any L ∈ X there exists a unique probability
measure on Y such that L(f) =

∫
Y
fdµ.

To see where the extreme points are involved in the above statement, the injective
map y 7→ (f 7→ f(y)) is a homeomorphism between the space Y and the set of ex-
treme points of X so µ can be considered as a probability measure on X that gives
mass 0 to the open set X \ Y (we now think of Y as a subset of X via the injective
homeomorphism above) so the support of µ is in the closed subset Y ⊂ X which is
in the set of extreme point of X.

In the above situation the extreme points of X form a compact Borel subset and
the representation turned out to be unique. This does not happen in the general case
and the first point is actually source of many problems in general (one can come up
with examples where the set of extreme points is not closed even in finite dimension).

To reformulate the Krein-Milman theorem we first give a preliminary result in the
form of

Proposition 1.4. Suppose that Y is a compact subset of a locally convex space E. A
point x in E is in the closed convex hull X of Y if and only if there exists a probability
measure µ on Y which represents x.

The Krein-Milman theorem states that: If X is a compact convex subset of a
locally convex space, then X is the closed convex hull of its extreme points. Using
Proposition 1.4 it is not very hard to reformulate the Krein-Milman theorem to the
following equivalent form

Theorem 1.5 (Krein-Milman). Any point x of a compact convex subset X of a locally
convex space can be represented by a probability measure supported on the closure of
the set of extreme points of X.

It becomes clear now that using a probability measure supported on only the
extreme points (not their closure) would be a sharpening of the Krein-Milman theo-
rem. Actually such a sharpening is necessary in many situations since as explained
in [Kle59], "most" compact convex sets of infinite dimensional Banach spaces are the
closure of their extreme points. So in these cases the Krein-Milman theorem is not
very useful since one can always use Dirac masses to represent points.

As we have said above the main issue in finding a probability measure supported
by extreme points is the nature of the set of extreme points itself which can fail to be
a Borel set. In the case where X is metrizable this handicap can be overcome since
X in this case would be Gδ set (countable intersection of open sets) according to



ON CHOQUET’S THEOREM 3

Proposition 1.6. If X is a metrizable compact convex subset of a topological real
vector space E then the set extr(X) of extreme points of X is a Gδ set.

We recall that one can always use Dirac point masses to represent points and notice
that if x is not an extreme point then it has more that one representation since it
is the barycenter of at least two distinct points. As one might expect, the extreme
points are exactly the points of X which admit only one representation (which is then
the Dirac measure in the point itself) [Bau61].

To conclude the introduction we note an instance where the the Krein-Milman
theorem yields interesting results.

Theorem 1.7 (Bernstein). If f is a bounded and completely monotone function on
(0,+∞) then there exists a unique non-negative Borel measure µ on [0,∞] such that
µ([0,∞]) = f(0+) and for each x > 0 we have

f(x) =

∫ ∞
0

e−αxµ(dα)

Notice that the converse is true since any function that can be represented as above
is necessarily completely monotone and also µ([0,∞]) = f(0+) follows by dominated
convergence. The limit f(0+) exits by monotonicity (but might be ∞)

Proof sketch. We only give a sketch of a proof using the machinery we have introduced
and we refer to [Phe01] for a complete proof. We denote by C the cone of completely
monotonic functions with f(0+) <∞ and K the compact convex set of such functions
with f(0+) ≤ 1. We reduce to the case f ∈ K by considering f/f(0+) when 0 6= f ∈ C.
The set K is convex in the space E := C∞((0,∞),R) which is locally convex in the
topology of uniform convergence (of the function and all its derivatives) on compact
subsets of (0,+∞). It remains to show that K is compact in this topology and the
extreme points of K are exactly the functions x 7→ e−αx , 0 ≤ α ≤ +∞. Applying
the Krein-Milman theorem will then allow us then to conclude. �

2. Choquet’s representation theorem in the metrizabe case

In this section we prove Choquet’s representation theorem for a metrizableX which
is actually a special case of the more general Choquet-Bishop-de Leeuw theorem since
the proof is not very long and will give us an opportunity to introduce some useful
tools for the general case. In this section X is a compact convex subset of a locally
convex space E.

Let h be a real valued function defined on a convex set C. The function is called
upper semi-continuous if for each real λ, {x : f(x) < λ} is open, while it is lower semi-
continuous if −h is upper semi-continuous. Let A be the set of all affine functions on
X which is a subset of the Banach space C(X) (endowed with the supremum norm)
and contains the constant functions. Furthermore, A contains all functions of the
forms x 7→ f(x) + r with f ∈ E∗ (recall that E∗ is the dual of E), r ∈ R and x ∈ X
so that A contains enough functions to separate the points of X.

Definition 2.1. If f is a bounded function onX and x ∈ X, let f̄(x) := inf{h(x), h ∈
A and h ≥ f}.

The function f̄ is calle the upper envelope of f , has the following nice properties
which follows fairly easily from the definition.
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(1) f̄ is concave, bounded and upper semi-continuous (hence Borel measurable)

(2) f ≤ f̄ and if f is concave semi-continuous then f = f̄ .

(3) If f, g are bounded then f + g ≤ f̄ + ḡ and |f̄ − ḡ| ≤ ‖f − g‖.

(4) f + g = f̄ + g if g ∈ A and rf = rf̄ if r > 0.

Theorem 2.2. (Choquet) Suppose that X is a metrizable convex subset of a locally
convex space E and x0 is an element of X. Then there exists a probability measure
µ on X which represents x0 and is supported by the extreme points of X.

Proof. (Bonsall) Suppose that X is matrizable, C(X) (and hence A) is separable.
There exists then a sequence of functions hn in A such that ‖hn‖ = 1 and (hn)n≥0
is dense in the unit sphere of A; in particular it separates the points of X. Let f =∑

2−nh2n this function is well defined since C(X) is Banach and the series converges
absolutely hence f ∈ C(X) and f is strictly convex (if x 6= y then hn(x) 6= hn(y)
for some n i.e the affine function hn is not constant on [x, y]. Then h2n is strictly
convex on [x, y] hence f is.) Let B denote the subspace A + Rf of C(X) generated
by A and f . Now from properties (3) and (4) the functional p defined on C(X) by
p(g) = ḡ(x0) (g ∈ C(X)) is sub-additive and p(rg) = rp(g). We define a linear
functional on B by h+ rf 7→ h(x0) + rf̄(x0). We want to show that h(x0) + rf̄(x0) ≤
(h+ rf)(x0) i.e the functional we defined on B is dominated by p. If r ≥ 0 then
h+ rf = h+ rf̄ while if r < 0 then h+ rf is concave then h+ rf = h+ rf ≥ h+ rf̄ .
By the Hahn-Banach theorem there exists a linear functional m on C(X) such that
m(g) ≤ ḡ(x0) for all g ∈ C(X) and m(h+ rf) = h(x0) + rf̄(x0) for h ∈ A and r ∈ R.
If g ∈ C(X) and g ≤ 0 then m(g) ≤ ḡ(x0) ≤ 0, i.e m is non-positive on non-positive
functions and hence is continuous. By the Riesz representation theorem, there exists
a non-negative regular Borel measure µ on X such that 1 = m(1) = µ(1) :=

∫
X
dµ

so µ is a probability measure and µ(f) = m(f) = f̄(x0). Since f ≤ f̄ we have
µ(f) ≤ µ(f̄) and for h ∈ A and h ≥ f we have h(x0) = m(h) = µ(h) ≥ µ(f̄) so we
get µ(f) = f̄(x0) ≥ µ(f̄). This means that µ vanishes on the complement of the set
E = {x : f(x) = f̄(x)}. It remains to show that E is contained in the set of extreme
points of X. Indeed of x = 1

2
(y + z) where y, z are distinct points in X then since f

is strictly convex we have f(x) < 1
2
(f(y) + f(z) ≤ 1

2
(f̄(y) + f̄(z)) ≤ f̄(x). �

Actually we have E := {x : f(x) = f̄(x)} exactly the set of extreme points of X.

Definition 2.3. If µ and λ are probability measures such that µ(f) = λ(f) for all
f ∈ A we write µ ∼ λ.

Proposition 2.4. If f is a continuous function on the compact convex set X then
for each x ∈ X we have, f̄(x) = sup{

∫
fdµ : µ ∼ δx}. This implies that f̄(x) = f(x)

if x is an extreme point in X.

Proof sketch. The last implication follows from the characterization of extreme points
in terms of representing measures. To show that first assertion we need to show that
f ′(x) := sup{

∫
fdµ : µ ∼ δx} coincides with f̄ . We can see from the definition that

f ′ is concave. Next we show that f ′ is upper-semi-continuous and conclude using a
similar argument than the one used to show property (2) that f ′ ≥ f̄ . We have on
the other hand for h ∈ A with h ≥ f and for any µ ∼ δx , h(x) = µ(h) ≥ µ(f) then
f ′ ≤ f̄ and we conclude. Refer to [Phe01] for full details. �
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Now that we have seen the special case where X is metrizable we are ready to dive
into the general case which is going to occupy us in the next section.

3. The Choquet-Bishop-de Leeuw theorem

Suppose now that X is a non-metrizable compact convex subset of a locally convex
space E. The extreme points of X do not in general form a Borel set [?] which makes
it hard to makes sense of the phrase "probability measure supported on extreme
points of X". We can in this case either drop the requirement that µ is a Borel
measure and work on a different σ-ring or apart the definition of "supported by" for
Borel measures. We take the second route and require that µ vanish on Baire subsets
of X which contain no extreme points (Baire sets are the sets of the σ-ring generated
by the compact Gδ sets).

Theorem 3.1. (Choquet-Bishop-de Leeuw) Suppose that X is a compact convex sub-
set of a locally convex space E and x0 ∈ X. Then there exists a probability measure µ
on X which represents x0 and vanishes on every Baire subset of X which is disjoint
from the set of extreme points of X.

The proof of this theorem will occupy us for the rest of this section. We denote
by A and C the set of affine and convex functions on X respectively. By C − C we
mean the space of function of the form f − g with f, g ∈ C. This space is a lattice
under the usual partial ordering since it is max-stable [by max(f1 − g1, f2 − g2) =
max(f1 + g2, f2 + g1)− (g1 + g2) ∈ C −C]. Since A ⊂ C −C the latter separates the
points of X and contains constant functions and thus applying the Stone-Weierstrass
theorem the space C − C is dense in the norm topology of C(X).

Definition 3.2. If λ and µ are non-negative regular Borel measures on X, write
λ � µ if λ(f) ≥ µ(f) for each f in C.

The relation � defined above is clearly reflexive and transitive. The fact that it is
anti-symmetric (i.e if λ � µ and µ � λ then λ = µ) is a simple result of the density
of C−C in C(X). Notice that for f ∈ A then f and −f are both in C so that λ � µ
means µ(f) = λ(f). Also if µ ∼ δx then µ � δx since f ∈ −C (i.e f concave) then
f = f̄ and hence f(x) = inf{h(x) : h ∈ A, h ≥ f} = inf{µ(h) : h ∈ A, h ≥ f} ≥ µ(f)
meaning that δx(−f) ≤ µ(−f) for all −f ∈ C.

We will be dealing with measures that are maximal for this partial ordering and
such measures will be called maximal. The idea is that when λ � µ the support of
λ is closer in some sense to the extreme points of X than that of µ. This can be
checked on simple situations (take X to be a triangle in a 2-dimensional plane for
example). We then hope that maximal measures with be supported on the extreme
points in the sense that we discussed above.

Lemma 3.3. If λ is a non-negative measure on X, then there exists a maximal
measure µ such that µ � λ.

Proof. The proof uses Zorn’s lemma and is omitted in this write-up. See [Phe01] for
a detailed proof. �

Proposition 3.4. If µ is a maximal measure on X, then µ(f) = µ(f̄) for each
continuous function f on X.

Proof. Let f ∈ C(X) and define the linear functional L on the one dimension subspace
Rf by L(rf) = rµ(f̄) and define sub-linear functional p on C(X) by p(g) = µ(ḡ). If



6 YASSINE EL MAAZOUZ

r ≥ 0, then L(rf) = p(rf) and of r < 0 then 0 = rf − rf ≤ rf+−rf = rf−rf hence
L(rf) = µ(rf̄) ≤ µ(rf) ≤ p(rf) then p dominates L on Rf . Then the Hahn-Banach
theorem gives the existence of and extension L′ of L to C(X) such that p ≥ L′. For
g ≤ 0 we have g ≤ 0 then L′(g) ≤ p(g) = µ(ḡ) ≤ 0. Then L′ ≥ 0 and there exists
then a non-negative measure ν on X such that L′(g) = ν(g) for each g ∈ C(X). If g is
convex then −g is concave meaning that −̄g = −g so that ν(−g) ≤ p(−g) = µ(−g).
Then means that if g is convex then µ(g) ≤ ν(g) hence ν � µ. Since µ is maximal we
deduce that ν = µ therefore µ(f) = ν(f) = L(f) = µ(f̄) which finishes the proof. �

The converse of the above result is actually also true [Phe01]. An important con-
sequence of the above proposition is that: If µ is a maximal measure, then µ is
supported by the set {x : f(x) = f̄(x)} for each f in C(X) (in particular in C) and
we have seen that each of these sets contains the set of extreme points of X. Now
if C contains a strictly convex function f0 we would have as in the proof of Cho-
quet’s theorem that extr(X) = {x : f0(x) = f̄0(x)} and the proof would be complete.
However the existence of a strictly convex function actually implies that the set X is
metrizable [Her61]. So the best we can hope for is that extr(X) is the intersection of
the sets {x : f(x) = f̄(x)} when f ∈ C. And indeed if f̄(x) = f(x) for each f ∈ C
and if x = 1

2
(y + z) with y, z ∈ X then

f(y) + f(z) ≥ 2f(x) = 2f̄(x) ≥ f̄(y) + f̄(z) ≥ f(y) + f(z)

meaning that 2f(x) = f(y) + f(z) for all f ∈ C and thus for all f ∈ C − C which
is dense in C(X) and hence x = y = z i.e x ∈ extr(X). It remains to tackle the
harder task which is to show that maximal measures vanish on the Baire sets which
are disjoint from extr(X). For that it is enough to show that µ(D) = 0 for any Gδ

set disjoint from extr(X) since µ(B) = sup{µ(D) : D ⊂ B,D a compact Gδ}. We
may assume that D is a compact subset of a Gδ set which is disjoint from extr(X).
To show that if µ(D) = 0 we first use Urysohn’s lemma to choose a non-decreasing
sequence {fn} of continuous functions on X with −1 ≤ fn ≤ 0, fn ≡ −1 on D and
limn fn(x) = 0 for x ∈ extr(X). We show that if µ is maximal then limn µ(fn) = 0
this will imply that µ(D) = 0. We shall need a couple of preliminary results to get
the desired "limit" result.

The first of the following couple of lemma reduces the problem to the Choquet
theorem on metrizable X. We will make use of the fact that for each x ∈ X there
exists µ ∼ δx supported on extr(X). Since we can’t in general extend a element
f ∈ A to an element in E∗ this is stronger than stated version of Choquet’s theorem
above. We shall not give a proof of these preliminary results and we refer to [Phe01]
for detailed proofs and discussion.

Lemma 3.5. Suppose that (fn)n is a bounded sequence of concave upper semi-continuous
functions on X, with lim inf fn(x) ≥ 0 for each x ∈ extr(X). Then lim inf fn ≥ 0 on
X

Proof. We refer the reader to [Phe01] for a detailed proof. �

Now this first result is not very unexpected and one can see how it works in finite
dimension although its much less trivial in the general case.
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Lemma 3.6. If µ is a maximal measure of X and if (fn) is a non-decreasing sequence
in C(X) such that 1 ≤ fn ≤ 0 for all n with lim fn(x) = 0 for x ∈ extr(X), then
limµ(fn) = 0

Proof. We refer the reader to [Phe01] for a detailed proof. �

These two results alongside the previous discussion actually show that: any maxi-
mal measure µ vanishes on any Gδ set of X that is disjoint of extr(X). As a result,
any maximal measure is supported by any closed set containing extr(X) and thus
the Choquet-Bishop-de Leeuw theorem generalizes the Krein-Milman theorem stated
above.

Finally we give a different statement of the Choquet-Bishop-de Leeuw theorem
which is more practical for applications.

Theorem 3.7. (Bishop-de Leeuw) Suppose that X is a compact convex subset of a
locally convex space and let S the ring σ-ring of subsets of X which is generated by
extr(X) and the Baire sets. Then for each point x0 in X there exists a non-negative
measure µ on S with µ(X) = 1 such that µ represents x0 and µ(extr(X)) = 1.

The proof [Phe01] is not very difficult once we have the Choquet-Bishop-de Leeuw
theorem in our hands.

As we’ve seen so far the idea of representation by means of extreme points, although
it is very intuitive and unsurprising in Euclidean spaces, is quite tricky in its full
generality. The arguments we went through (or referred to in other sources) required
a combination of some highly non-trivial results in functional analysis and measure
theory. One has to appreciate the power of this circle of ideas since it simplifies a great
deal of arguments (for instance to prove a statement one might end up only having
to prove it for extreme points since all other points are a "convex combination" of
these). The nice thing in particular about Choquet-Bishop-de Leeuw is the generality
of the statement which only requires compactness and convexity of X and E to be
locally convex and once could be surprised how diverse the situation is which this
can be applied.

References

[Bau61] Heinz Bauer. Silovscher rand und dirichletsches problem. In Annales de l’institut Fourier,
volume 11, pages 89–136, 1961.

[BL59] Errett Bishop and Karel De Leeuw. The representations of linear functionals by measures
on sets of extreme points. In Annales de l’institut Fourier, volume 9, pages 305–331, 1959.

[CM63] Gustave Choquet and Paul-André Meyer. Existence et unicité des représentations intégrales
dans les convexes compacts quelconques. In Annales de l’institut Fourier, volume 13, pages
139–154, 1963.

[Her61] Michel Hervé. Sur les representations integrales a l’aide des points extremaux dans un
ensamble compact convexe metrisable. CR Acad. Sci. Paris, 253:366–368, 1961.

[Kle59] Victor Klee. Some new results on smoothness and rotundity in normed linear spaces. Math-
ematische Annalen, 139(1):51–63, 1959.

[Phe01] Robert R Phelps. Lectures on Choquet’s theorem. Springer Science & Business Media, 2001.

Email address: yassine.el-maazouz@berkeley.edu


	Introduction and background
	Choquet's representation theorem in the metrizabe case
	The Choquet-Bishop-de Leeuw theorem

