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1. Introduction and some background

Conformal martingales are two dimensional stochastic processes that arise as a
composition of an analytic/ holomorphic function and a complex Brownian motion.
They are being studied since at least the 70s (as far as I know). They enjoy some
interesting and curious properties that we shall investigate and they are useful in di-
verse settings like artificial intelligence [Vov19] and the study of harmonic functions
on Riemann manifolds [Le99].

Since we are going to be using the complex representation for two dimensional
stochastic processes and encounter some concepts in complex analysis we need to
recall some basics. A holomorphic function on an open neighbourhood of C is a
function f = p + iq which is continuously differentiable as a function of two real
variables and such that the derivative is a complex multiplication (Cauchy-Riemann
conditions)

∂p

∂x
=
∂q

∂y
and

∂q

∂x
= −∂p

∂y

such a function is called C-differentiable and we have f ′ = ∂p
∂x
− i∂p

∂y
. We define the

following differential operators

∂

∂z
:=

1

2
(
∂

∂x
− i ∂

∂y
) and

∂

∂z
:=

1

2
(
∂

∂x
+ i

∂

∂y
)

The Cauchy Riemann conditions translate to ∂f
∂z

= 0 and we have f ′(z) = ∂f
∂z
. We

recall also that the zeroes of a holomorphic function are isolated (no accumulation
points). A function that is holomorphic on the whole entire plane is called an entire
function.
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We will be revisiting some concepts from a previous talk on time changes for
continuous semi-martingales hence we recall some important theorems that we have
seen

Theorem 1.1. (Dambis, Dubins-Schwarz) Let Xt be a local martingale vanishing at
0 with 〈M,M〉∞ =∞. Then if we set

Tt = inf{s : 〈M,M〉s > t} and Bt = XTt

Then Bt := MTt is a Brownian motion and Mt = B〈M,M〉t.

Theorem 1.2. (Knight) Let Xt be a d-dimensional continuous local martingale van-
ishing at 0 with 〈Xi, Xj〉 = 0 for i 6= j and 〈Xi, Xi〉∞ =∞. Then if we set

T kt = inf{s : 〈X(k), X(k)〉s > t} and B(k)
t = X

(k)

Tk
t

Then B is a Brownian motion

2. Conformal martingales and planar Brownian motion

A two dimensional local martingale Z is a two dimensional stochastic process whose
coordinates are local martingales with respect to the same filtration. We use the
complex representation and write Z = X + iY where X, Y are local martingales.
For example the planar Brownian motion B = B(1) + iB(2) is a two dimensional
martingale. As we have seen before one can define the bracket of two real valued
continuous semi-martingales using quadratic variation. The same can be done for a
complex valued continuous local martingale.

Proposition 2.1. Let Z be a continuous local martingale. There exists a unique
continuous complex complex process of finite variation which we denote by 〈Z,Z〉
such that Z2 − 〈Z,Z〉 is a complex local martingale.

Proof. Uniqueness is easy to see using the fact that a real-valued local-martingale for
which the bracket is 0 is constant (this we have seen in a previous talk). For existence
one just need to define the bracket by C-linearity in both variables i.e

〈Z,Z〉 = 〈X + iY,X + iY 〉 := 〈X,X〉 − 〈Y, Y 〉+ 2i〈X, Y 〉
It is clear that this process has finite variation and that Z2 − 〈Z,Z〉 is a local

martingale. �

Notice that for Z2 to be a local martingale it is necessary and sufficient to have
〈Z,Z〉 = 0 which is equivalent to 〈X,X〉 = 〈Y, Y 〉 and 〈X, Y 〉 = 0.

Definition 2.2. If one the previous equivalent conditions holds we call Z a conformal
local martingale (conf. loc. mart)

The planar Brownian motion is clearly a conf. loc. mart. and also isH = HX+iHY

is a complex locally bounded predictable process and Z a conf. loc. mart. the process

Ut :=

∫ t

0

HsdZs :=

∫ t

0

HX
s dXs −

∫ t

0

HY
s dY s+ i

(∫ t

0

HX
s dYs +

∫ t

0

HY
s dXs

)
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is a loc. conf. mart. This is not so hard to see using the fact that the C-linearity
of the bracket. Notice also that one has 〈X,X〉 = 1

2
〈Z,Z〉 and hence we have in

particular

〈U,U〉t = 2
〈∫ .

0

HX
s dXs −

∫ .

0

HY
s dY s,

∫ .

0

HX
s dXs −

∫ .

0

HY
s dY s

〉
t

= 2

∫ t

0

(HX
s )2d〈X,X〉s +

∫ t

0

(HX
s )2d〈Y, Y 〉s =

∫ t

0

|Hs|2d〈Z,Z〉s

We have a simple formulation of Ito’s formula in the

Proposition 2.3. If Z is a conf. loc. mart and F a complex valued function on C
which is twice continuously differentiable then we have

F (Zt) = F (Z0) +

∫ t

0

∂F

∂z
(Zs)dZs +

∫ t

0

∂F

∂z
(Zs)dZs +

1

4

∫ t

0

∆F (Zs)〈Z,Z〉s

if F is harmonic then we can see that F is a local martingale. Moreover if F is a
holomorphic function we have

F (Zt) = F (Z0) +

∫ t

0

F ′(Zs)dZs

We revisit Knight’s theorem (seen in a previous talk on time changes) in the con-
formal setting

Theorem 2.4. If Z is a conformal local martingale and Z0 = 0 then there exists
(with possible enlargement of probability space) a complex Brownian motion B such
that

Zt = B〈X,X〉t

Proof. Follows easily from DDS or Knight’s theorem. �

One consequence of this theorem is what’s called the conformal invariance of planar
Brownian motion which states that

Theorem 2.5. If F is a non constant entire function, F (Bt) is a time changed BM .
More precisely there exists on the probability space of B a complex Brownian motion
B̃ such that

F (Bt) = F (B0) + B̃〈X,X〉t

where 〈X,X〉t =
∫ t
0
|F ′(Bs)|2ds is strictly increasing and 〈X,X〉∞ =∞

Proof. F 2 is also entire and hence F 2(Bt) is a loc. mart. using Ito’s formula. Hence
F ◦ B is a conf. loc. mart. Hence by the previous theorem one has F (Bt) =
F (B0) + B̃〈X,X〉t where X is the real part of F (B) and thus

〈X,X〉t =

∫ t

0

|F ′(Bs)|2ds

Since there is only countably many zeros of F ′ then B almost surely avoids all of
them hence 〈X,X〉t is strictly increasing almost surely. Remains to show that it’s
limit is∞. We will come back to this later on when we have the required information
to deal with it. �
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For a Markov process X on a state space E we call a Borel set A polar if for any
starting point z of the process X the hitting probability of A is 0 i.e

∀z ∈ E, Pz(TA <∞) = 0

We have seen that the Brownian motion is one dimension is point-recurrent . The
following result show that the one-point sets are polar for d ≥ 2

Theorem 2.6. The one-point sets are polar for the Brownian motion in dimension
d ≥ 2

Proof. It is enough to show it for d = 2 and using the symmetries and geometric
properties of Brownian motion it’s enough to show that the BM started at 0 does not
hit the point −1 a.s.

Let Mt = eBt − 1, since the exponential is entire the previous theorem allows us to
write Mt = B̃At where B̃ is a planar BM and At =

∫ 1

0
exp(2Xs) where X = Re(B).

The process A is strictly increasing and A∞ =∞ since if not M has an "end" point
in C but |Mt| ≥ exp(Xt)− 1 and surely Xt is not bounded and is recurrent which is
then a contradiction. So the paths of M are exactly the Brownian paths. But since
exp(Bt) is never 0 this shows that these paths avoid the point −1 a.s. �

This one among many proofs and the nice thing about it is that it is very simple
and slick but that is due to the heavy machinery we already developed. This shows
how important the time change idea is: it makes life easier.

So one-point sets are polar or Brownian motion of dimension d ≥ 2 and hence
so are all the countable sets (but there also uncountable set that are polar even in
d = 2). Another interesting property of Brownian motion is that it is neighbourhood-
recurrent in d = 2 (but not in d ≥ 3 !) as the following theorem states:

Theorem 2.7. Let B be a planar BM. For any point z and any r > 0 the set
{t, Bt ∈ B(z, r)} is unbounded.

Proof. Consider Mt = log(|Bt − z|) this is a.s well defined since {z} is polar. By the
"same argument" as above we can write Mt = WAt where W is a BM in dimension
1 and At =

∫ t
0

1
|Bs−z|2ds. Since |Bt − z| ≥ |Xt − x| which is not bounded hence

supMt = +∞ which gives A∞ = 〈M,M〉∞ = ∞ and surely A is strictly increasing
hence the paths of M are exactly the paths of a Brownian motion in dimension 1
which goes below log(r) at arbitrarily large t. �

Remark 2.8.
1) Other proofs of this exist for instance using harmonic functions and Ito’s formula
log(|z|) is harmonic in d = 2 hence its frequent appearance in d = 2.

2) A more powerful result exists: For any Borel set A with strictly positive Lebesgue
measure the set {t, Bt ∈ A} is unbounded and even better of infinite Lebesgue mea-
sure.

3) The Brownian path on the plane is a.s dense!

Now that we have seen some interesting results we can go back to finish the proof
of Theorem 2.5.
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Suppose we had 〈X,X〉∞ <∞. Then the process F (Bt) would have a limit at ∞.
Hence F (Bt) is as bounded on a positive measure set. Since Bt is dense in d = 2
this can only mean that F is bounded and entire. A theorem of Liouville concerning
entire functions implies then that F is constant which is a contradiction.

The following result deals with the transience of BM in d ≥ 3 and the statement
is as follows

Theorem 2.9. If d ≥ 3 then lim |Bt| = +∞ a.s.

Proof. Clearly it is enough to show this in d = 3 when B is started at some point
x0 6= 0. Since {0} is polar Ito’s formula on 1

|Bt| shows that this is a positive loc. mart
hence a positive super-martingale which thus converges as to a non-negative random
variable H. Fatou’s lemma shows that

Ex0 [H] ≤ lim inf Ex0 [
1

|Bt|
]

But 1
|Bt|

d
= 1
|B1|
√
t
so we deduce that the above liminf is 0 hence H = 0 a.s. Hence

|Bt| converges to ∞ a.s. �

It might be unclear where the ingredient d ≥ 3 is used in the previous argument.
Actually it is hidden in the fact that fd(x) := 1

|x|d−2 is harmonic for d ≥ 3.

Here is a curious result on conformal martingales

Theorem 2.10. Let Z be a conformal martingale on (0,+∞) (i.e where we don’t
start anywhere : no starting point). Then for almost every ω on of the following
happen

(1) lim
t→0+

Zt(ω) exists in the Riemann sphere (C together with its boundary).

(2) For each δ > 0 the set {Zt(ω), 0 < t < δ} is dense in C.

Remark 2.11. Both possibilities can occur. If Bt is a planar BM starting at 0 and
f is a holomorphic function on C∗ then f(Bt), t > 0 is a conformal martingale. If
0 is a removable singularity (f bounded near 0) then lim f(Bt) exists. If the singu-
larity is a pole then lim f(Bt) = ∞ but if it is an essential singularity then the set
{f(Bt), 0 < t < δ} is dense for any δ > 0.

A very interesting example is f(z) = e1/z which has an essential singularity in 0.
The above then says that {e1/Bt , 0 < t < δ} is dense in C for any δ > 0.

Proof. Omitted. See [DMW77] page 491. �

This is an analogue for conformal martingales of Weierstrass’s theorem on essential
singularities.

We now discuss the polar representation of the planar/complex Brownian motion
started at some point a 6= 0. Since {0} will then be polar one can choose a continuous
determination θ of the argument of B such that θ0 is a constant exp(iθ0) = a

|a| . We
then write Bt = ρt exp(iθt) and the two processes ρ, θ are adapted to the filtration
generated by B. Now here is a theorem
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Theorem 2.12. There exists a planar BM (β, γ) such that

ρt = |a| exp(βCt) and θt = θ0 + γCt

where Ct :=
∫ t
0
ρ−2s ds. We also have Fβ∞ = Fρ∞ hence ρ is independent of γ.

Proof. Since B starts from a 6= 0 it a.s never hits 0 so one can define a conformal
martingale by

Ht :=

∫ t

0

B−1s dBs

Hence 1
2
〈H,H〉 = 〈Re(H), Re(H)〉 = C. We claim that B = a exp(H) this can be

proved using Ito’s formula for conf. loc. mart. via

d(Bte
−Ht) = 0

There exists a planar BM (β, γ) such that Ht = βCt + iγCt . This shows half of
the statement above. For the second statement notice that β is the DDS Brownian
motion for the loc. mart. Re(H) = log( ρt|a|) and

Re(Ht) =

∫ t

0

XsdYs + YsdXs

ρ2s
=

∫ t

0

dβ̃s
ρs

where β̃ is a real BM. We then get

log(ρt) = log(|a|) +

∫ t

0

exp(− log(ρs))dβ̃s

Then from proposition V.1.11 in [RY13] we get Fβ∞ = Fρ∞ and thus ρ is independent
of γ.

�

Notice that as ρ becomes small the argument θ varies more rapidly which is intu-
itive. Also we have

lim inf θ = −∞ and lim sup θ = +∞ a.s
this means that the planar BM winds an arbitrarily large numbers of times around
0 then unwinds an arbitrarily large number of times and keeps doing this forever.
Some strong asymptotic results concerning θ have been established among which me
mention

Theorem 2.13. (Spitzer’s law) 2θt
log(t)

d−−−→
t→∞

C1 where C1 has the standard Cauchy
distribution.

Proof. See [PY18][section 8.3] and [Spi91] �

The limit as one can expect does not depends on the starting point z0 6= 0, but it’s
curious that the Cauchy distribution appears as a limit.

There is much much more to planar Brownian motion than what we have just seen
(intersections, windings, asymptotic laws, ... etc). For more details on these we refer
to the Guide to Brownian motion [PY18] and to [Spi91].
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A cute application of this theory is the proof of the fundamental theorem of algebra
(or D’Alembert’s theorem) which states that C is an algebraically closed field (each
non constant polynomial with complex coefficients has a root in C). For any non
constant polynomial P the set paths of the process P (Bt) are the Brownian paths
in the plane and we know these are neighbourhood recurrent hence a.s the set {t >
0, |P (Bt)| ≤ ε} is unbounded. This proves the existence of a sequence zk ∈ C such
that |P (zk)| ≤ 1/k for all k. Since P explodes at ∞ the points zk are all in some
compact region of plane hence there is a sub-sequence that converges to a root of P .

3. Brownian martingales

Following our previous discussion of conformal martingales, in this section we dis-
cuss Brownian martingales and some first results on stochastic integral representation.
First of all we set things up by recalling that we are working on a probability space
(Ω,F , (Ft)t≥0,P) on which we have an (Ft)-Brownian motion B and we assume for
simplicity of notation that the filtration (F)t is generated by B (suffices to change
the filtration otherwise) and F∞ = F .

We call S the set of left continuous step function with compact support by which
we mean functions f of the form

f =
n∑
i=1

λi1]ti−1,ti]

and for any f ∈ S we denote by Ef the process defined as

Eft := exp

(∫ t

0

f(s)dBs

)
The process Ef obviously has a limit when t→∞ which we simply denote by Ef∞.

Let L2(F ,P) be the space of square integrable functions on our probability space.

Lemma 3.1. The set {Ef∞, f ∈ S} is total in L2(F ,P). (i.e generates a dense
subspace of)

Proof. We proceed by showing that if Y ∈ L2(F ,P) is orthogonal to all the variables
Ef∞ then Y is P-a.s zero which means showing that Y.P is the zero measure. This a
standard argument when dealing with Hilbert spaces and we are going to rely on some
notions of complex analysis. First we show that Y.P is zero on σ(Bt0 , Bt2 . . . , Btn)
for t0 < · · · < tn.

For z1, . . . , zn ∈ C let φ(z1, . . . , zn) := E
[
exp

(∑n
j=1 zj(Btj −Btj−1

)
)
Y
]
. Clearly

φ is an analytic function on Cn (locally a power series in multiple variables at each
point). Saying that Y is orthogonal to all the Ef∞’s implies that φ is identically zero
on Rn and since it’s analytic this implies that φ ≡ 0 everywhere. In particular when
zj = iλj for λj ∈ R we get

E

[
exp

(
n∑
j=1

iλj(Btj −Btj−1
)

)
Y

]
= 0

Hence the Fourier transform of the measure Y.P is identically 0 on σ(Bt0 , Bt1 . . . , Btn)
which means that Y.P = 0 on σ(Bt0 , Bt1 . . . , Btn). This implies that Y = 0 a.s on
F . �
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This lemma will turn out to be very useful to show the

Proposition 3.2. For any Y ∈ L2(F ,P) there exists a unique predictable process
H in L2(B) (L2 processes with Brownian filtration) such that

F = E[F ] +

∫ ∞
0

HsdBs

Proof. Let H be the subspace of L2(F ,P) consisting of elements that can be written
as above (elements that are representable as stated). The strategy to prove existence
is to show that this space contains the total set of the previous lemma and that it is
closed. Let’s deal with uniqueness first. For an F ∈ H we have

E[F 2] = E[F ]2 + E
[∫ +∞

0

H2
sds

]
Hence if the F is representable by two process H and H ′ one would get (this this

representation is linear)

E
[∫ +∞

0

|Hs −H ′s|2ds
]

= 0

Now as explained to show existence we start by noticing that H contains the Ef∞’s
for f ∈ S since we have using Ito’s formula that

Eft = 1 +

∫ t

0

Efs f(s)dBs

It remains then to show that H is a closed space (even better, we will show that
H is complete). Let (Fn) be a Cauchy sequence in H with corresponding processes
(Hn) which is Cauchy in L2(B). The latter space being complete the sequence (Hn)
converges to a predictable process H ∈ L2(B) hence Fn converges to

limE[Fn] +

∫ +∞

0

HsdBs

This finishes the proof. �

An important thing to notice is that the condition H ∈ L2(B) is crucial for
uniqueness. For instance let T > 0 and dT the first time B hits 0 after T i.e
dT := {u > T,Bu = 0} then F = 0 can be represented by the zero process and
by H = 1[0,dT ] (but H is not in L2(B) in this case).

The main result of this section will be the extension of the previous proposition to
local martingales which is the statement of the

Theorem 3.3. Let M be an (Ft)-local martingale. Then M has a version that can
be written as

Mt = C +

∫ +∞

0

HsdBs

where C is a constant and H is a predictable process which is locally in L2(B). In
particular every (Ft)-local martingale has a continuous version.
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Proof. The proof is divided into three steps. First we show the theorem for L2

bounded martingales then for uniformly integrable martingales and then extend to
local martingales.

If M is L2 bounded then it converges to M∞ ∈ L2(F) and Mt = E[M∞|Ft]. The
previous proposition gives

M∞ = E[M∞] +

∫ ∞
0

HsdBs

for a predictable process H is L2(B). Hence we deduce that

Mt := E[M∞] +

∫ t

0

HsdBs

Now assume M is uniformly integrable, M converges then to M∞ ∈ L1(F). The
space L2(F) is dense in L1(F) so there exists a sequence of L2 bounded martingales
M (n) such that M (n)

∞
L1−−−→

n→∞
M∞. Doob’s maximal inequality gives for any λ > 0

P
(

sup
t
|Mt −M (n)

t | > λ

)
≤ 1

λ
E[|M∞ −M (n)

∞ |]

Using Borel-Cantelli we can extract a subsequence Mnk
that converges uniformly

to M hence M has a continuous version.

To extend to local martingales suffices to notice that it clearly has a continuous
version (thanks to the previous point) and use the definiton : there exists a sequence
of stopping times Tk such thatMTk is bounded and use the first part of the proof. �

The same result and proof are also valid in a multidimensional setting.

Theorem 3.4. If B is d-dimensional and M is a local martingale with respect to
the Brownian filtration then it has a continuous version and there exist predictable
processes Hi locally in L2(Bi) such that

Mt = C +
d∑
j=1

∫ t

0

HjdB
(j)
s

A few interesting remarks should be made as this stage.

Remark 3.5.

(1) Notice that in Theorem 3.4 that 〈M,Bj〉t =
∫ t
0
Hjdt hence the processes Hj

are the Radon-Nikodym derivatives of d〈M,Bj〉t with respect to the Lebesgue
measure. In concrete examples these can be explicitly computed. For instance
when f is harmonic the representation of f(Bt) is given by Itô’s formula.

(2) The above result gives in particular a representation of variables L2(F) as
stochastic integrals with dBs, next we will see another kind of representation
of this space.

We work again with the 1-dimensional case and we introduce some notation. Let
Cn be the n-dimensional polyhedral cone defined as
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Cn := {(s1, . . . , sn) ∈ Rn
+, s1 > s2 > · · · > sn}

and L2(Cn) the space of real valued square-integrable functions on Cn with respect
to the Lebesgue measure. We denote by Sn the space spanned by function in the set
En which consists of f on Cn of the form f(s) = f1(s1) . . . fn(sn) where fi ∈ L2(R+).
This space if dense in L2(Cn) or in other words En is a total family.

For f = f1 . . . fn ∈ En we define

Jn(f) =

∫
Cn

f(s)dBs :=

∫ ∞
0

f1(s1)dBs1

∫ s1

0

f2(s2)dBs2 · · ·
∫ sn−1

0

fn(sn)dBsn

We have again the Itô’s isometry (no so hard to check)

‖Jn(f)‖L2(F) = ‖f‖L2(Cn)

Finally let Kn be the smallest closed linear subspace of L2(F) that contains Jn(f)
for all f ∈ En (or equivalently contains Jn(Sn)). We call the space Kn the n-th
Wiener chaos space.

The map Jn is defined on the set En and it’s not so hard to see that it is well
defined on Sn. Using the isometry property it can extended to L2(Cn) by taking
limits since Sn is dense in L2(Cn) and the isometry property remains valid.

An interesting property of the spaces Kn ⊂ L2(F) is that for n 6= m we have
Kn ⊥ Km (not so hard to understand why: use Ito’s isometry for usual stochastic
integrals).

Now here is an interesting theorem

Theorem 3.6. Let K0 be the space of constants. Then one has

L2(F) =
∞⊕
n=0

Kn

This means that for each Y ∈ L2(F) there exists a sequence f (n) ∈ L2(Cn) such
that

Y = E[Y ] +
+∞∑
n=0

Jn(f (n))

where the converges of the sum is in L2.

Proof. Let f be a step function with compact support. We first show that the result
is true for Ef∞ = e

∫
R+

f(s)dBs . We have

Ef∞ = 1+
∞∑
n=1

1

n!

(∫
R
f(s)dBs

)n
= 1+

∞∑
n=1

∫
R+

f(s1)dBs1

∫ s1

0

f(s2)dBs2 · · ·
∫ sn−1

0

f(sn)dBsn

Hence Ef∞ = 1+
∑∞

n=1 Jn(f (n)) where fn = f . . . f . Since f is bounded with compact
support the sum converges in L2. So the property is also true for linear combinations
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of Ef∞’s. Since the spaces these function span is dense in L2(F) and L2(F) is complete
we deduce that the result is true for any variable Y ∈ L2(F) �

Notice that the first chaos space K1 consists of Gaussian random variables. It is
the closure of the spaces generated by the Bt’s. We have already encountered the
decomposition into chaos spaces when we discussed the martingales exp(θBt− 1

2
θ2t).

For x and t ≥ 0 we have

exp

(
θx− 1

2
θ2t

)
=

+∞∑
n=0

Hn(x, t)
θn

n!

Then for an L2(R+) function f we have

exp

(
θ

∫
R+

f(s)dBs −
1

2
θ2
∫
R+

f 2(s)ds

)
=

+∞∑
n=0

Hn

(∫
R+

f(s)dBs,

∫
R+

f 2(s)ds

)
θn

n!

We actually have ∂xH(x, t) = Hn−1(x, t) thus

Hn

(∫ t

0

f(s)dBs,

∫ t

0

f 2(s)ds

)
=

∫ t

0

Hn−1

(∫ s

0

f(s)dBs,

∫ s

0

f 2(s)ds

)
f(s)dBs

so clearly we have Hn

(∫
R+
f(s)dBs,

∫
R+
f 2(s)ds

)
∈ Kn. This actually another proof

of the previous theorem. We refer to [PY18][Section 5] and references therein for
more details.

It is known (we refer to [PY18][page 31]) that for Y ∈
⊕n

i=1Kn there exists α > 0
such that

E[exp(αY 2/n)] < +∞
Exercise 3.19 in chapter V of [RY13] provides a way to prove this.

In theorem 3.3 we have seen integral representation of local Brownian martingales.
A natural question to ask is which martingale M can be written as M = H.B where
H is a predictable process and B a Brownian motion for the filtration (FMt ) generated
by M . Here is a partial answer to this question in

Proposition 3.7. If M is a continuous local martingale such that the measure
d〈M,M〉 is almost surely equivalent to the Lebesgue measure, there exist an (FMt )-
predictable process ft which is dt⊗dP strictly positive and an (FMt )-Brownian motion
B such that

d〈M,M〉t = ftdt and Mt = M0 +

∫ t

0

f 1/2
s dBs

Proof. Let f the process defined as ft := lim inf
n→∞

n(〈M,M〉t − 〈M,M〉t−1/n).
Since d〈M,M〉t is a.s equivalent to the Lebesgue measure we deduce that f is strictly
positive a.s and that it’s a predictable process. The process f 1/2 is locally in L2(M).
Now let Bt be the process defined as
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Bt :=

∫ t

0

f−1/2s dMs

B is then a continuous local martingale with 〈B,B〉t = t thus B is a Brownian
motion. �

The condition d〈M,M〉t is equivalent to the Lebesgue measure is crucial. It it not
enough that it is absolutely continuous with respect to dt because the filtration of
M might not be big enough to support a Brownian motion (just think of a constant
martingale). However one can avoid this problem if we have a Brownian motion B′
independent of M and set

Bt :=

∫ t

0

1fs>0f
−1/2
s dMs +

∫ t

0

1fs=0dB
′
s

Using Lévy’s characterization theorem, B is a Brownian motion and one has Mt =∫ t
0
f
1/2
s dBs. In other words the theorem still holds if we enlarge the probability space

to provide ourselves with an independent Brownian motion. This result can be proved
in the multidimensional case as the following theorem states.

Theorem 3.8. Let M = (M1, . . . ,Md) be a continuous local martingale such that
d〈M (i),M (i)〉t � dt for every i. Then with a possible enlargement of probability
space, there exists a d-dimensional Brownian motion B and a d × d matrix valued
process α in L2

loc(B) such that

Mt = M0 +

∫ t

0

αsdBs

Sketch of the proof. We reduce to the case M0 = 0 and use the previous theorem and
linear algebra. We refer to [RY13][Page 203] for details of the proof.

�

4. Integral representation

We start this section with a definition.

Definition 4.1. A continuous local martingale X has the predictable representation
property (denoted PRP) if for any (FXt )-local martingale M there exists an (FXt )-
predictable process H such that

Mt = M0 +

∫ t

0

HsdXs

In section 3 we have seen that Brownian local martingales can be written as sto-
chastic integrals of predictable processes. Hence the Brownian motion has the PRP.
This is actually a property of the Wiener measure on the space C([0,+∞),R) of real
valued continuous functions on [0,+∞). Before we set things up here is a useful
decomposition result.

Lemma 4.2. If X is any continuous local martingale, then for every (FXt )-continuous
local martingale M vanishing at 0 there exists a unique (FXt )-predictable process H
such that the process L = M − H.X satisfies 〈L,X〉 = 0. This means M can be
decomposed as

M = H.X + L with 〈X,L〉



CONFORMAL AND BROWNIAN MARTINGALES, INTEGRAL REPRESENTATION 13

Proof. The uniqueness is not so hard to see because this decomposition is linear in
H. To prove existence we consider a sequence T increasing to +∞ of stopping times
that reduces both M and X to L2-bounded martingales. We denote by H2

0 the
Hilbert space of continuous L2-bounded (FXt )-martingales vanishing at 0. The space
G := {H.XT , H ∈ L2(XT ) predictable } is closed inside H2

0 . So we can apply the
projection theorem on a closed subspace of a Hilbert space to obtain

MT = H.XT + L

where L ∈ G⊥. For any bounded stopping time S we have

E[XT
S LS] = E[XT

S E[L∞]FS] = E[XT
S L∞] = 0

The last equality is due to the fact that XT
S = XT∧S

∞ and XT∧S ∈ G. Hence the
process XTL is a martingale and 〈XT , L〉 = 〈X,L〉T = 0. Thanks to the uniqueness
result we can extend the processes H,L to processes H,L that satisfy the desired
property. �

Now we set things up in such ta way that we discuss probability measure with
representation properties instead of processes. We work on the Wiener space W :=
C(R+,R) on which the coordinate process is denoted X and we put F0

t = σ(Xs, s ≤
t). Let H be the set of probability measures of W such that X is a local martingale.
If P ∈ H we call FP

t the smallest right-continuous filtration of P that is complete for
P and such that F0

t ⊂ FP
t .

The PRP now is formulated as a property of the measure P as follows: any FP-
local martingale may be written as M = H.X where H is FP-predictable and the
stochastic integration is taken with respect to P.

We denote by K the subset of H consisting of probability measures for which X is
a martingale. It is not very hard to see that sets K and H are convex.

Definition 4.3. A probability measure P of K (respH) is called extremal if whenever
P = αP1 + (1− α)P2 with α ∈ (0, 1) and P1,P2 ∈ K (resp. H) then P1 = P2.

The following discussion relates the PRP to extremality. Let’s start with a useful
measure theory result

Theorem 4.4 (Douglas). Let (Ω,F) be a measurable space and L a set of real valued
F-measurable functions and L∗ the vector space generated by 1 and L.

If KL is the set of probability measures µ on (Ω,F) such that L ⊂ L1(µ) and∫
fdµ = 0 for all f ∈ L then KL is convex and µ is extremal in KL if and only if L∗

is dense in L1(µ).

Proof. The proof is not very hard, we refer to [RY13][page 210]. �

As an application of this theorem we consider the space (W,F0
∞) and the set L

of random variables 1A(Xt − Xs) where 0 ≤ s < t and A in F0
s . The set KL of the

previous theorem is in this case exactly the set K of probabilities for which X is a
martingale. We shall use this measure theory result to show the

Proposition 4.5. If P is extremal in K then any (FP
t )-local martingale has a con-

tinuous version
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Proof. Notice that it is enough to show that for any Y ∈ L1(P), the cadlag martingale
EP[Y |FP

t ] has a continuous version. This is thanks to the 3 step argument that we
have already encountered ( passing from uniformly integrable martingales to local
martingales ).

For Y ∈ L∗ it is not hard to see that the previous property is true when Y ∈ L
(hence also in L∗). The previous measure theory result implies that L∗ is dense in
L1(P). Hence for a variable Y ∈ L1(P) there is an approximating sequence Yn ∈ L∗.
Using the maximal inequality, for any ε > 0

P
[
sup
s≤t

∣∣EP[Yn|FP
s ]− EP[Y |FP

s ]
∣∣ ≥ ε

]
≤ 1

ε
E[|Yn − Y |]

Borel-Cantelli allows to extract a uniformly convergent subsequence from the Yn’s
which finishes the proof.

�

Theorem 4.6. The probability measure P is extremal in K if and only if P has the
PRP and FP

0 is P-trivial.

Proof. If P is extremal then FP
0 (otherwise one can decompose P into a nontrivial

convex combination of measures in K). Suppose that the PRP does not hold for
P. By lemma 4.2 and the previous proposition there exists a continuous (FP

t )-local
martingale L such that 〈X,L〉 = 0. By stopping, since we have 〈X,LT 〉 = 〈X,L〉T for
any stopping time, we may assume that L is bounded by some constant k. Now let
P1 = (1+L∞/(k+1))P and P1 = (1−L∞/(k+1))P. We then have P = (P1+P2)/2 is
a non trivial convex combination and also P1,P2 ∈ K since P ∈ K and L is a bounded
martingale. This contradicts the extremality of P.

Conversely, assume that P has the PRP and FP
0 is P-a.s trivial, and that P =

αP1 + (1 − α)P2 with α ∈ (0, 1) and P1,P2 ∈ K. The derivative dP1

dP |Ft is a P-
martingale has a continuous version L since P has the PRP. XL is also a continuous
martingale hence 〈X,L〉 = 0. Since P has the PRP we can write Lt = L0 +

∫ t
0
HsdXs

and one has
∫ t
0
Hsd〈X,X〉s. Then P-a.s we have Hs = 0 d〈X,X〉.a.e. Then Lt = L0

and L is constant P-a.s. Since the starting sigma-algebra FP
0 is trivial one has L = 1

a.s. Hence P = P1 and thus P is extremal. �

This result can be extended to the set H of measures that make X a local mar-
tingale. The proof is rather technical so we will not discuss it here and we refer the
reader to [RY13][page 211] for a fairly detailed argument.

Theorem 4.7. The probability measure P is extremal in H if and only if P has the
PRP and FP

0 is P-trivial

Proof. Omitted �

This result implies that the Wiener measure on W is extremal. One can actually
prove this fact very easily using Lévy’s characterization of Brownian motion.
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