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Abstract. The main aim of this paper is to present the main arguments to es-
tablish local class field theory via Lubin-Tate formal groups.

1. Introduction and motivation

The goal of local class field theory is to classify all finite abelian extensions of a
given local field K. In this paper we focus on the non-archimedian case as ou main
concern and rather than dealing with abelian Galois extensions L/K individually
we deal with them globally as subextensions of the maximal abelian extension Kab

(which we will define later) that sits in some separable closure of K. Our main
objective it to gives the steps to prove the following

Theorem 1.1. If K is a local field, there exists a unique group homomorphism
Art : K× −→ Gal(Kab/K) satisfying the two following properties

(i) If π is a uniformizer of K and L/K is a finite unramified extension of K then
we have Art(π)|L = FrobL/K

(ii) If L/K is finite abelian, Art induces an group isomorphism K×/N(L×) →
Gal(L/K) via th map

K× → Gal(L/K)

x 7→ Art(x)|L

Theorem 1.1 is often refered to as Local Artin Reciprocity and it allows us to under-
stand and classify abelian extensions of K.

Studying abelian extensions of local fields is motivated by questions of number
theoretic nature. For instance when F is a number field (finite extension of Q) there
exists a canonical everywhere unramified extension E/F such that the only primes
of F that split in L are the principal primes and such that Gal(E/F ) is isomorphic
to the ideal class group of F which is a finite abelian group. Thus studying ideal
class groups leads naturally to the study of finite abelian extension of F . It turns out
however that studying abelian extensions of number fields is quite challenging and
that it is easier to study their behavior when localized at a prime ideal p which leads
us to studying local fields and their abelian extensions. Classifying Galois extensions
is a very ambitious endeavor and with the Langlands program there is now research
being done on non-abelian class field theory.

1
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In this paper we go throught the main steps to prove Artin’s Local Reciprocity
using Lubin-Tate formal groups and it is organized as follows. In section 2 we review
some important results concerning extensions of local fields. Section 3.1 introduces
formal groups and section 3.2 defines Lubin-Tate formal groups. In section 4 we build
totally ramified abelian extensions of local fields and section 5 is dedicated to proving
the existance and uniqueness of the Artin map Art. We warn the reader that we will
be skipping some details when proofs get too complicated but we will nevertheless
refer to other sources for details.

The results we discuss throughout this paper are standard results in number theory
and once can find more details in many sources like [Mil], [II86] , [Ser13] and also
the original Lubin-Tate paper [LT65]. Alternative proofs that use Galois cohomology
are given by Milne [Mil] and Serre [Ser13] and the advantage that Lubin-Tate theory
offers is a more explicit construction that avoids cohomology arguments.

2. Extensions of local lields

Let K be a non-archimedian local field with ring of integers OK and mK the unique
maximal ideal of OK . We define the residue field k := OK/mK

∼= Fq where q is a
power of some prime number p := char(k) > 0. If L is a finite separable extension
of K we denote by OL the integral closure of OK in L which is also a DVR and we
denote mL its unique maximal ideal and kL := OL/mL the residue field. We denote
by eL/K the ramification index of mK in L and fL/K its inertia degree. The trace
and norm map are respectively denoted TrL/K and NL/K or simply Tr,N when there
is no ambiguity. If vK , vL are the additive valuations on K,L respectively we have
vL(x) := 1

eL/K
vK(NL/K(x)) for any x ∈ L. We denote by Kal an algebraic closure

of K and Ks ⊂ Kal the separable closure of K in Kal. The valuation vK extends
uniquely to a valuation v on Kal which defines a norm (multiplicative valuation |.|)
on Kal. For n ≥ 1 we denote µn the set of nth-roots of the unit in Kal, notice that
if gcd(n, p) = 1 then µn ⊂ Ks (we don’t really need this condition in the mixed
characteristic case char(K) 6= 0). We start with the first well understood example of
abelian local field extensions.

Lemma 2.1. Let L/K be a finite Galois extension, then L/K is unramified if an
only if Gal(L/K) and Gal(kL/k) are canonically isomorphic.

Proof. Let’s prove first that kL/k is Galois. Let kL = k[α] and f = Minα,k(X) the
minimal polynomial of α. Since k is finite it is perfect and thus f has simple roots.
Let f ∈ OK [X] be a lift of f , by Hensel’s lemma there exists a ∈ L such that
f(a) = 0 and a ≡ α mod mL. Since L is a Galois extension the polynomial f splits
in L and thus f splits in kL which means that kL/k is a Galois extension. The action
of Gal(L/K) preserves the valuation vL so there exists a canonical homomorphism
Gal(L/K)→ Gal(kL/k), σ 7→ σ.

Now when L/K is unramified we have [L : K] = [kL : k] so we have L = K[a].
The automorphisms in σ ∈ Gal(L/K) map a into distinct conjugates. Thus the
map Gal(L/K)→ Gal(kL/k) is a surjective group homomorphism and since the two
groups have the same cardinality it is an isomorphism. Conversely if the two Galois
groups are isomorphic then we have fL/K := [kL : k] = |Gal(kL/k)| = |Gal(L/K)| =
[L : K] then the extension L/K is unarmified. �
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Proposition 2.2. For any positive integer n, Kn := K(µqn−1) is the unique un-
ramified extension of K of degree n and it is a Galois extension with a cyclic Galois
group.

Proof. If L/K is a degree n unramified extension then we have [kL : k] = n which
means that kL ∼= Fqn . Then since µqn−1(k) ⊂ kL we also have by Hensel’s lemma
µqn−1(K) ⊂ L which means that Kn ⊂ L. Now it suffices to show that Kn is indeed
a degree n unramified extension which implies showing that [Kn : K] = n and this
we can do again using Hensel’s lemma. �

Since the composite field of two unramified extensions of K is also a ramified
extension, there exists then a canonical maximal unramified extension of K which we
denote by Kur := ∪nKn. From lemma 2.1 and proposition 2.2 we have Gal(Kn/K) ∼=
Gal(Fqn/Fq) = Z/nZ. We then deduce that Gal(Kur/K) ∼= lim

← n
(Z/nZ) = Ẑ ∼=

Gal(Fq/Fq). The Frobenius map Frob ∈ Gal(Kur/K) is the automorphism that
reduces modulo mK to the qth-power map on Fq. Galois theory tells us the the
composite of two abelian extensions is also abelian then we can also define a canonical
maximal abelian extension of K which we denote Kab.

3. Lubin-Tate formal groups

3.1. Formal groups.
For non-zero commutative ring A we denote by A[T ] the ring of formal power series
in one variable T and for an integer n ≥ 1 we denote by A[[X1, . . . , Xn]] the ring of
formal power series in n variables. When f ∈ TA[T ] and g ∈ A[T ] one can make
sens of the composition law g ◦ f(T ) := g(f(T )) because we can recursively define
the coefficients (all coefficient are finite sum and we can make sens of finite sums on
A). When f has a non-zero constant term computing the constant term of g(f(X))
involves dealing with infinite sums in A. Before defining formal group laws over A
we start with the following useful lemma.

Lemma 3.1. If f = a1T +a2T
2 · · · ∈ TA[[T ]] then a1 ∈ A× if and only if there exists

g ∈ TA[[T ]] such that g ◦ f = f ◦ g = T . In this case g is unique and we denote it
f−1 which we call the inverse of f .

Proof. For f =
∑
i≥1

aiT
i, g =

∑
i≥1

biT
i ∈ TA[[T ]], let (ci)i≥1 be the sequence in A such

that f ◦g =
∑
i≥1

ciT
i. Then we have c1 = a1b1 , c2 = a1b2+a2b

2
1 and in general we have

cn = a1bn + Pn(a1, . . . , an, b1, . . . , bn−1) where Pn is some polynomial. If f−1 exists is
is clear from the form of the coefficient c1 = a1b1 = 1 that a1 ∈ A×. Conversely if
a1 ∈ A× we can iteratively define a unique sequence (bi) to get c1 = 1 and ci = 0 for
i ≥ 2 which means that f−1 exists. �

We now define commutative formal group laws over A which will be useful for later
constructions.

Definition 3.2. A commutative formal group over A is a formal power series of two
variables F (X, Y ) ∈ A[[X, Y ]] satisfies the following axioms :
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i) F (X, Y ) = F (Y,X) (commutativity)

ii) F (F (X, Y ), Z) = F (X,F (Y, Z)) (associtivity)

iii) F (X, Y ) ≡ X + Y mod (deg 2)

Condition (iii) in the above definition can actually be replaced with the condition
F (X, 0) = X and F (0, Y ) = Y . In fact if f(X) = F (X, 0) then we have f(X) ≡ X
mod (deg 2) then by Lemma 3.1 f has an inverse f−1. Then using (ii) we have
F (F (X, 0), 0) = F (X,F (0, 0)) which translates to f ◦ f = f and by composing with
f−1 we get f(X) := F (X, 0) = X and the same argument applies to F (0, Y ) = Y .
This condition is actually very important as we will see in the following lemma

Lemma 3.3. For any power series f ∈ TA[[T ]] there exists g ∈ TA[[T ]]example
such that F (f(T ), g(T )) = 0.

Proof. It suffice to prove the lemma for f = T . In fact if there exists h(T ) inTA[T ]
such that F (T, h(T )) = 0 then for any f ∈ TA[T ] we have F (f(T ), h(f(T ))) = 0.
Now we prove the result for f(T ) = T . From the discussion above we can write
g(T ) := F = X + Y +

∑
i≥1

ai,jX
iY j then we get the expression F (T, h(T )) = T +

h(T ) +
∑
i≥1

ai,jT
ih(T )j. Then by writing h(T ) :=

∑
i≥1 biT

i we get g(T ) ≡ (1 + b1)T

mod (deg 2), g(T ) ≡ (1 + b1)T + (b2 + a1,1)T
2 mod (deg 3) and in general we have

g(T ) ≡
n∑
i=1

(bi + qi)T
i mod (deg(n+ 1))

where qi is some polynomial expression in b1, . . . , bi−1 for i ≥ 2. Then we can clearly
define the sequence (bi) recursively in such a way that g(T ) = F (T, h(T )) = 0. �

We can then equip the ideal (T ) := TA[[T ]] with a new abelian group structure by
defining the law f +F g = F (f, g). In fact by definition of F this law is commutative,
associative and by the lemma above every element f ∈ (T ) has an inverse iF (f) which
is then unique.

Definition 3.4. Let F,G be two commutative formal groups over A and f ∈ (T ) a
power series with no constant coefficient. We call f a homomorphism from F to G
and we write f : F → G if it satisfies

f(F (X, Y )) = G(f(X), f(Y )) i.e f(X +F Y ) = f(X) +G f(Y )

We denote by Hom(F,G) the set of homomorphisms from F toG. If f ∈ Hom(F,G)
has an inverse it is called an isomorphism.

Lemma 3.5. The set Hom(F,G) ⊂ (T ) is a subgroup of (T ) for the addition +G and
(End(F ) := Hom(F, F ),+F , ◦) is a ring.

Proof. We have T ∈ Hom(F,G) 6= ∅ and for f, g ∈ Hom(F,G) and h = f+Gg we have
h(F (X, Y )) = G(f, g)(F (X, Y )) = G(f(F ), g(F )). Then since f, g : F → G we have
h(F (X, Y )) = G(G(f(X), f(Y )), G(g(X), g(Y ))) then we deduce that h(F (X, Y )) =
(f(X) +G f(Y )) +G (g(X) +G g(Y )). Then since +G is by definition associative and
commutative we deduce that h(F (X, Y )) = (f(X)+Gg(X))+G (f(Y )+Gg(Y )) which
means that h(X +F Y ) = h(X) +G h(Y ). Then Hom(F,G) is indeed a subgroup of
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((T ),+G). For the second part we clearly see that End(F ) is closed under composition
and it’s not so hard to check the ring axioms. �

Example 3.6. Let ρ : mK −→ 1 + mK , x 7→ 1 + x. The power series F (X, Y ) =
X + Y + XY is a formal group law and endowing the maximal ideal mK with the
group +F makes the map ρ : (mK ,+F ) −→ (1 + mK ,×) a group isomorphism.

3.2. Lubin-Tate Formal groups.

Now that we have established some preliminaries on commutative formal group
laws we go back to the local field settings in section 2 to introduce Lubin-Tate formal
groups. We recall that K is a local field with ring of integers OK whose maximal
ideal is mK and OK/mK

∼= Fq. For any uniformizer π of K we define the set P(π) of
power series f ∈ OK [[X]] satisfying

i) f(X) ≡ πX mod (deg 2) and (ii) f(X) ≡ Xq mod (mK)

In other words P(π) is the set of power series in (X) with linear coefficient π and
that reduce modulo π to the Frobenius map. We start with the following important
lemma:

Lemma 3.7. Let f, g ∈ P(π) and φ(X1, . . . , Xn) a linear form with coefficients in
OK. There exists a unique power series Φ ∈ OK [[X1, . . . , Xn]] such that

i) Φ ≡ φ mod deg 2

ii) f(Φ(X1, . . . , Xn)) = Φ(g(X1), . . . , g(Xn))

Proof. Similarly to the proof of Lemma 3.3 we construct Φ recursively. Let Φ ∈
OK [[X1 =, . . . , Xn]] we write Φ =

∑
k≥1

φk where φk is a homogeneous polynomial of

degree k and we define the partial sums Φr =
r∑

k=1

φk. We have f ◦ Φ ≡ f ◦ Φr

mod (deg r + 1) and Φ ◦ g := Φ(g(X1), . . . , g(Xn)) ≡ Φr ◦ g mod (deg 2). Now we
choose φ1 := φ and we then have Φ ≡ φ mod (deg 2) and thus Φ satisfies the first
condition. Since f, g ∈ P(π) and we also have f ◦ φ1 ≡ πφ1 mod (deg 2) ≡ φ1 ◦ g.
Now suppose that we have picked φ1, . . . , φr in such a way that f ◦ Φr ≡ Φr ◦ g
mod (deg r+1) for some r ≥ 1. We have Φr+1◦g = Φr◦g+φr+1◦g ≡ Φr◦g+πr+1φr+1

mod (deg r + 2) and also f ◦ Φr+1 ≡ f ◦ Φr + πφr+1 mod (deg r + 2). Then to pick
the term φr+1 we need to solve the equation (π − πr+1)φr+1 ≡ Φr ◦ g − f ◦ Φr

mod (deg r+ 2). Since we already have f ◦Φr ≡ Φr ◦g mod (deg r+ 1) we need only
solve (π − πr+1)φr+1 = Pr+1 where Pr+1 is the homogeneous terms with degree r + 1
of the series Φr ◦ g − f ◦ Φr. Then it only remains to prove that Pr+1 mod (π) = 0
and for that we have Pr+1 ≡ Φr ◦ (g mod (π))− (f mod π)◦Φr ≡ Φr(X

q
1 , . . . , X

q
n)−

Φr(X1, . . . , Xn)q, and since we now are working with power series over k ∼= Fq the last
quantity is equals 0. Thus φr+1 is uniquely determined from the choice of φ1, . . . , φr.
This construction proves existence and uniqueness because we had only one choice
for φ1 which completely determines all the other terms. �

Proposition 3.8. For any f ∈ P(π) there exists a unique formal commutative formal
group law Ff ∈ OK [[X, Y ]] such that f ∈ End(Ff ).

Proof. By applying lemma 3.7 to f = g and φ(X, Y ) = X + Y there exists a unique
power series Ff (X, Y ) such that f ◦ Ff = Ff ◦ f . It then remains to show that Ff
is indeed a commutative formal group over OK . We have by definition Ff ≡ X + Y
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mod (deg 2) so the last condition of definition 3.2 is satisfied. Now let Φ(X, Y, Z) :=
Ff (X,Ff (Y, Z)) and Ψ(X, Y, Z) := Ff (X,Ff (Y, Z)) we clearly have Φ(X, Y, Z) ≡
Ψ(X, Y, Z) mod deg 2 and since f ◦ Ff = Ff ◦ f we also have f ◦ Φ = Φ ◦ f and
f ◦ Ψ = Ψ ◦ f thus using the uniqueness in 3.7 we deduce that Φ = Ψ which meas
that Ff is associative. We prove the commutativity of Ff similarly. �

Let f, g ∈ P(π), by applying Lemma 3.7 to φ(X) = αX for any α ∈ OK , there
exists a unique power series [α]f,g ∈ OK [[X]] such that

i) [α]f,g ≡ αX mod deg 2

ii) f ◦ [α]f,g = [α]f,g ◦ g

when f = g we simply write [α]f instead of [α]f,f

Lemma 3.9. The map OK
[.]f−→ End(Ff ) is well defined, injective and is a ring

homomorphism from (OK ,+,×) to (End(Ff ),+Ff , ◦).

Proof. For α ∈ OK we have [α]f ◦Ff ≡ α(X + Y ) mod (deg 2) ≡ Ff ◦ [α]f and since
f ∈ End(Ff ) both series commute with f then using the uniqueness in lemma 3.7
we deduce that [α]f ∈ End(Ff ) then [.]f is indeed well defined. The injectivity stems
from the fact that we can recover α using [α]f ≡ αX mod (deg 2). We check the
ring homomorphism conditions by once more using uniqueness in lemma 3.7 �

For any f ∈ OK [[X]] the powers series Ff defines a commutative formal group law
and the map [.]f : OK End(Ff ) define a formal scalar multiplication. For example
when L/K is a finite extension (mL,+Ff ) is an abelian group and we can endow it
with an OK-module structure where we define the scalar multiplication a.x for a ∈
OK , x ∈ mL by a.x := [a]f (x) ∈ mL the latter is an element in m because any power
series in x ∈ mL converges. This module structure will turn out to be very useful in
section 4 to build some interesting abelian extensions of K. A legitimate question to
ask is how much does this structure depend on the choice of the uniformizer π and
the power series f ∈ P(π)? The choice of the uniformizer is very important as we
shall see in the the next section when we construct abelian extensions. It turns out
however, that the choice of f ∈ P(π) is unimportant as we explain in the following
proposition.

Proposition 3.10. Let f, g ∈ P(π) and a ∈ OK the formal OK-modules structures
(Ff , [.]f ), (Fg, [.]g) are isomorphic.

Proof. For f, g, h ∈ P(π) and a, b ∈ OK we have [ab]f,h = [a]f,g ◦ [b]g,h (this is not
hard to see using lemma 3.7) and we have [a]f,g ∈ Hom(Ff , Fg). We have [1]f,g ∈
Hom(Ff , Fg) is an isomorphism and its inverse is [1]g,f . �

Then the OK-module structures (Ff , [.]f ) and (Fg, [.]g) are isomorphic are are thus
independent of the choice of f, g ∈ P(π).

4. Totally ramified abelian extensions

4.1. Building totally ramified abelian extensions.
As we have seen in section 2, adjoining the root of the polynomial Xqn−1 − 1 to
K yields the unique unramified extension Kn := K(µqn−1) of degree n ≥ 1. In this
section we will see that we can construct totally ramified extensions ofK in somewhat
the same manner by considering K(µn,f ) where µn,f is a set of roots.
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Now that we have introduced formal OK-modules we finally get to put them to
construct the so-called Lubin-Tate extensions. Before we do so however we need to
introduce a new player. We keep using the same notations as in section 3. Recall
that Ks is the separable closure of K in Kal, we define µ := {x ∈ Ks, |x| < 1} which
we endow with the OK-module structure (Ff , [.]f ). We also define the following set

µn,f := {x ∈ µ, [πn]f (x) = 0} = {x ∈ µ, f (n)(x) := (f ◦ · · · ◦ f)(x) = 0}
Recall that [.]f is a ring homomorphism and notice that [π]f = f so the last equality
holds. The set µn,f is actually a sub-module of (µ, Ff , [.]f ) and we have the following
proposition

Proposition 4.1. µn,f is isomorphic to OK/(πn) as an OK-module.

Proof. From proposition 3.10, for any g ∈ P(π) we have an OK-module isomorphism
from (Ff , [.]f ) to (Fg, [.]g) so it suffices to prove that (µn,g, Fg, [.]g) ∼= OK/(πn) for
g(X) := πX + Xq ∈ P(π). The power series g(n) is actually a polynomial in OK so
it has a finite set of roots in so the OK-module µn,g is finite. Then since OK is a
principal ideal domain (even better it is a DVR) we deduce by the structure theorem

µn,f
∼= OK/(πr1)× · · · × OK/(πrs)

where r1 ≤ · · · ≤ rs are positive integers. The polynomial Xq−1 + π is separable
because it is co-prime with its derivative (q − 1)Xq−1 6= 0 (because char(K) does
not divide q − 1). Then the polynomial g(X) = X(Xq−1 + π) has q-distinct roots
in Ks. The non zero roots are conjugates so they have the same valuation and their
product is ±(π) thus all the roots of g have positive valuation and thus lie are all in
µ. This means that |µ1,g| = q so since |OK/(πm)| = qm for any m ≥ 1 we deduce
from the structure theorem above that µ1,f

∼= OK/(π) to deduce the general case we
use induction with the following exact sequence

0 −→ µ1,g −→ µn,g
[π]g−−→ µn−1,g −→ 0

the map µ1,g −→ µn,g is clearly injective (it’s actually just an inclusion map) so to
see that we have an exact sequence we only need the surjectivity of the second map.
For any α ∈ µ by the same argument as above the roots of g(X)− α have a positive
valuation and thus are in µ which means that [π]g : µ −→ µ is a surjection which

immediately give us the surjectivity of µn,g
[π]g−−→ µn−1,g so we have indeed an exact

sequence. We then deduce that µn,g
∼= µ1,g×µn−1,g which gives by induction |µn,g| =

qn also by induction we get that µn,g is cyclic. Combining this with the structure
theorem and the fact that µn,g contains a subgroup isomorphic to OK/(πn) �

For any finite Galois extension L/K, x1, . . . , xn ∈ mL and power series F ∈
OK [[X1, . . . , Xn]] the power series F (x1, . . . , xn) converges in L and for σ ∈ Gal(L/K)
we have σ(F (x1, . . . , xn)) = F (σ(x1), . . . , σ(xn)) by taking limits in L. We then have
a group action of Gal(L/K) on µn,f and the action is compatible with the OK-module
structure of µn,f . We denote by Kπ,n := K(µn,f ) and we recall that f ∈ P(π) which
means that a priori the extension Kπ,n depends on both π and f . But since as we
seen before the OK-modules µn,f are isomorphic to one another when f ∈ P(π) the
extension Kπ,n does not depend on f hence the notation Kπ,n. Observe that Kπ,n/K
is by definition a Galois extension because it is the splitting field of a polynomial
(choose f(X) = Xq + πX). We begin with the following important theorem.
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Theorem 4.2.

i) For any n ≥ 1, Kπ,n/K is a totally ramified extension and [Kπ,n : K] = (q − 1)qn−1

ii) The action of OK on µn,f induces a group isomorphism (OK/(π)n)× −→ Gal(Kn,π/K)

iii) π ∈ N(Kπ,n)

Proof. Since Kπ,n does not depend on the choice of f we pick f = Xq + πX. Since
the map [π]f : µ → µ is surjective we can inductively define a sequence x1, . . . , xn
such that f(x1) = 0 and f(xi+1) = xi for any 1 ≤ i ≤ n − 1 and we the extensions
K(xi) and we have

K ⊂ K(x1) ⊂ · · · ⊂ K(xn) ⊂ Kπ,n

For each i ≤ n−1 the extension K(xi+1)/K(xi) is obtained by adding the root xi+1

of Pi(X) =: f(X)−xi = Xq+πX−xi ∈ OK(xi)[X] which is an Eisentein polynomial.
The the first extension of previous tower has degree q − 1 and all the others have
degree q and they are all totally ramified extensions which means that K(xn)/K is
totally ramified. Thus we deduce that we necessarily have [Kπ,n : K] ≥ (q − 1)qn−1.
It remains to show that K(xn) = Kπ,n.
Kπ,n := K(µn,f ) is the splitting field of f (n) which means that the Galois group

Gal(Kπ,n) is isomorphic to a subgroup in the group of permutations of µn,f even
better the action of Gal(Kπ,n) is compatible with the OK-module structure of µn,f

thus Gal(Kπ,n/K) is actually isomorphic to a subgroup of AutOK (µn,f ) and from
proposition 4.1 we have µn,f

∼= OK/(πn) then we have AutOK (µn,f ) ∼= (OK/(πn))×.
This means that |Gal(Kπ,n)| ≤ |(OK/(πn))×| = (q − 1)qn−1. Then we deduce that
Kπ,n = K(xn) and this finishes the proof of (i). The second point (ii) is a consequence
of the cardinality bounds we invoked.

For the last point in the theorem, notice that xn 6= 0 is a root of the polynomial
f (n)(X) then it is a also a root of Q(X) = (Xq−1 + π) ◦ f (n−1) so since [K[xn] :
K] = (q − 1)qn−1 the polynomial Q has to be both the minimal and characteristic
polynomial of xn over K. This allows us to compute the norm of xn and we have
NKπ,n/K(xn) = π. �

We have just constructed as promised a totally ramified extension Kπ,n that is
an abelian Galois extension thanks to the second point in theorem 4.2. We define
Kπ = ∪n≥1Kπ,n and we then Kπ is a Galois extension and we have Gal(Kπ/K) ∼=
lim
←n

(OK/(πn))× = O×K which means that Kπ is also abelian. The extension Kπ

depends on the choice of π as we shall see shortely. Nevertheless we have the following
nice result

Proposition 4.3. If u ∈ Un := 1 + mn
K = 1 + (πn) and π′ = uπ where π is a

uniformizer for K then we have Kπ′,n = Kπ,n for any n.

Proof. Let u = 1 + πnv ∈ 1 + mn
K where v ∈ OK and let π′ = uπ. We first claim

that there exists an element α ∈ OKs (where Ks is the separable closure of K) such
that u = Frob(α)

α
. To see this we show that we can construct α in such a way that

Frob(α)/α ≡ u mod πk for all k ≥ 0.
Let’s look for α of the form α = 1 + πnw. We then have Frob(α)

α
= 1+Frob(πnw)

1+πnw
and

thus we get Frob(α)
α
≡ (1+Frob(πnw))(1−πnw) ≡ 1+Frob(πnw)−πnw mod (πn+1).

Then for a start we need to have 1 + Frob(πnw)−πnw ≡ 1 +πnv mod (πn+1). Since
Galois action preserves valuations we can write Frob(πn) = πna thus we need to have
aFrob(w) − w ≡ v mod (π) taking the quotient modulo (π) we get need to solve
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a × wq − w = v in the residue field. Then we can find w satisfying this equation.
Following this procedure we can produce such an element α.

Now let f ∈ P(π), g ∈ P(π′) and βg ∈ µn,g, using similar arguments to the proof
of lemma 3.7 (see [Yos08, Lemma 3.4]) we can prove that there exists a unique power
series Φ such that Φ(X) ≡ αX mod (deg 2) and Φ satisfies the commutation relation
g◦Φ = ΦFrob ◦f where ΦFrob is the power series whose coefficients are obteined by ap-
plying Frob to those of Φ. Then we have Φ ∈ Hom(Ff , Fg) and also Φ◦Ff ≡ α(X+Y )
mod (deg 2) ≡ Fg ◦Φ. Since Ff , Fg ∈ OK [[X, Y ]] we have FFrob

f = Ff and thus we de-
duce that g◦Φ◦Ff = ΦFrob◦f ◦Ff = ΦFrob◦Ff ◦f = ΦFrob◦FFrob

f ◦f . This means that
g◦Φ◦Ff = (Φ◦Ff )Frob◦f . In the same manner we also get g◦Fg ◦Φ = (Fg ◦Φ)Frob◦f
and then by uniqueness of Φ we deduce that Φ ◦ Ff = Fg ◦ Φ. From this we get
µn,g = Φ(µn,f ). Since βg ∈ µn,g there exists βf ∈ µn,f such that βg = Φ(βf ).

We have g ≡ π′X ≡ uπX mod (deg 2) then we get Φ ◦ [π′]f = [π′]g ◦ Φ. This
equation translates to Φ ◦ [u]f ◦ [π]f = g ◦ Φ = ΦFrob ◦ f = ΦFrob ◦ [π]f . We then get
ΦFrob = Φ ◦ [u]f . Applying this to βf ∈ µn,f yields ΦFrob(βf ) = Φ([u]f (α)). But since
u ∈ 1 + mn

K and we have seen that AutOK (µn,f ) ∼= (OK/(πn))× = O×K/(1 + mn
K) the

map [u]f is the identity map in Aut(µn,f ) thus we deduce that ΦFrob(βf ) = Φ(βf ).
Galois theory gives Kur ∩Kn,π = K, the the Frobenius map Frob can be extended to
an automorphism of the field Ln := Kur.Kπ,n such that Frob acts trivially on Kn,π.
Now since Frob(βf ) = βf we get ΦFrob(βf ) = Frob(Φ(βf )) = Φ(βf ). Thus we deduce
that βg = Φ(βf ) is fixed by Frob which means that βg ∈ Kn,π this being valid for any
βg ∈ µn,g we get Kπ′,n ⊂ Kπ,n. A similar proof with u−1 gives the other inclusion. �

The proposition states that to have Kπ,n = Kπ′,n for two uniformizers π, π′ it
suffices to have π′/π ≡ 1 mod mn

K . In some sense as n becomes bigger it get harder
and harder to have Kπ,n = Kπ′,n when π, π′ are fixed. We now proceed to study norm
groups which are going to give a deeper understanding for the role of the uniformizer
π.

4.2. Norm group.

We denote by N the the norm map of the extension Kπ,n/K. We have N(K×π,n) is
a subgroup of K×.

Proposition 4.4. Nπ,n(K×π,n) as a subgroup of K× is generated by π and 1 + mn
K.

Proof. Assume the existence of the Artin map of Theorem 1.1 (which we have not
discussed yet). Then by choosing L = Kπ,n which is a finite abelian extension, point
(ii) of the theorem ensures that K×/N(L×) ∼= Gal(L/K). By theorem 4.2 we have
Gal(L/K) ∼= O×K/(1 + mn

K) then we deduce that K×/N(L×) ∼= O×K/(1 + mn
K) =

K×/〈π, 1 + mn
K〉. Thus we deduce that N× = 〈π, 1 + mn

K〉 as stated.

Without assuming the existence of the Artin map the proof is considerably more
complicated. The interested reader can refer to [Rie06]. �

We then have NKπ/K(K×π ) = ∩Nπ,n(K×π,n) = πZ. This shows that the field exten-
sions Kπ are distinct for different choices of the uniformizer π which confirms that
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there is no canonical maximal totally ramified extension. In the next section how-
ever we will show that Kab = Kur.Kπ for any uniformizer π ∈ K and that we have
canonical totally ramified extensions of Kur.

5. Artin’s map

The motivation behind building totally ramified abelian extension in the last sec-
tion is to prepare for the proof of Theorem 1.1 which we finally get to discuss in this
section. Let Lπ = Kπ.K

ur which an extension of K that still depends on π a priori.
Since Kπ ∩Kur (thanks to the nature of their respective Galois groups O×K and Ẑ)
we have a group isomorphism

Gal(Lπ/K)
∼−→ Gal(Kπ/K)×Gal(Kur/K) : σ 7→ (σ|Kπ , σ|Kur)

It suffices then to have the action of σ on the two sub-extensions of Kπ and Kur

to describe σ on Lπ. We can then define a homomorphism φπ : K× −→ Gal(Lπ/K)
via the map

K× −→O× × Z −→Gal(Kπ/K)×Gal(Kur/K) ∼= Gal(Lπ/K)

uπr 7→ (u, r) 7→([u−1]f ,Frobm) := φπ(uπr)

The moral of this story is that we are hoping to have Lπ = Kab for any uniformizer
π and then our goal would be to prove that φπ (which is then independent of π is the
desired Artin map. Let’s start by proving that Lπ and φπ are actually independent
of π.

Let π′ = uπ another uniformizer of K where u ∈ O×K and let f ∈ P(π), g ∈ P(π′)
( we are using notation from section 3) and Ff , Fg their corresponding Lubin-Tate
formal groups. If we have Ff ∼= Fg over OK then the two extensions Kπ,n, Kπ′,n

would be equal for any n ≥ 1. Since O×K 3 u = π′/π 6= 1 there exists n ≥ 1
such that u 6∈ 1 + mn

K . Then using proposition 4.4 we see that π ∈ N(K×π,n) but
we have π′ 6∈ N(K×π ) = (π, 1 + mn

K). This gives us the converse of proposition 4.3
and we then have Kπ,r = Kπ′,r ⇐⇒ π′/π ∈ 1 + mr

K for any integer r ≥ 1. We
want to show that the extensions Kπ,n.K

ur are the canonical totally ramified exten-
sions of Kur for this we need to prove that Ff , Fg are isomorphic over Kur i.e there
exists Φ ∈ XOKur [[X]] such that Φ is invertible and Φ : Ff −→ Fg is a homomorphism.

Every infinite algebraic extension of K is not complete in particular Kur is not
complete which means that we may have problems when evaluating power series
on mKur . It is then handy to work on the completion of Kur which we denote as
usual by K̂ur. We can uniquely extend the automorphism Frob of Kur to K̂ur by
continuity and we keep the notation Frob for the extended automorphism. For our
future arguments in this section we will need the following

Lemma 5.1. There exists a power series Φ ∈ ÔKur [[X]] satisfying the following

i) Φ(X) ≡ uX mod (deg 2)

ii) Frob ◦Φ = Φ ◦ [u]f

iii) Φ ◦ Ff = Fg ◦ Φ

iv) Φ ◦ [a]f = [a]g ◦ Φ, ∀ a ∈ OK
Properties (i) translates to Φ is invertible and (iii) translates to Φ ∈ Hom(Ff , Fg)

then together they give us that Φ is an isomorphism from Ff to Fg. The point (iv)
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means that Φ commutes with the OK-module actions [.]f , [.]g. This result is proven
in [Mil, Proposition 3.10, p 27] and we will not go through the proof in this paper.

Since Ff ∼= Fg over K̂ur the sets µn,f ,µn,g are isomorphic as ÔKur -modules and
thus the extensions Kπ.K̂ur = Kπ′ .K̂ur are the same. Taking completions are also
the same and we then get K̂π′ .Kur = K̂π.Kur which means L̂π = L̂π′ . The following
lemma allows us to conclude that Lπ = Lπ′

Lemma 5.2. Let L a separable algebraic extension of a local field K and L̂ its com-
pletion. Then we have L̂ ∩Ks = L.

Proof. Gal(Ks/L) acts trivially on L thus by continuity its also trivial on L̂ ∩ Ks.
We then deduce that L̂ ∩Ks ⊂ L. The other inclusion is trivial. �

Proof. (φπ does not depend on π)
Now we know that Lπ does not depend on π we denote it LK and we now need to
show that also φπ does not depend on π. We start by proving φπ′(π′) = φπ′(π) for
any couple of uniformizers π, π′ := uπ where u ∈ O×K .

By definition the automorphisms φπ′(π′), φπ′(π) ∈ Gal(LK/K) satisfy φπ′(π′)|Kur =
φπ′(π)|Kur = Frob, it remains to show that the they are also the same on Kπ′ . Notice
that φπ′(π′) is the identity map on Kπ′ so we need only show that φπ′(π) is also the
identity map on Kπ′ . Let Φ as in Lemma 5.1 which is an isomorphism Φ : Ff

∼−→ Fg.
Recall that Φ is also an isomorphism from µn,f to µn,g that’s compatible with the
OK-module structures. Since Kπ′,n = K(µn,g) it suffices to show that φπ′(π) fixes all
the elements in µn,g for all n.

Let βg ∈ µn,f , there exits βf ∈ µn,f such that βg = Φ(βf ). We have

φπ′(π)|Kπ(βg) = (φπ′(u−1)φπ′(π′))|Kπ(βf ) = [u]g(βg)

= [u]g ◦ Φ(βf )

= Φ ◦ [u]f (βf )

= Φ ◦ φπ(π)(βf )

= Φ(βf ) = βg

then the automorphisms φπ′(π′), φπ′(π) are the same on both Kπ and Kur so they
are the same on LK = Kπ.K

ur i.e φπ′(π′) = φπ′(π). To see that φπ = φπ′ consider
three uniformizers π, π′, π′′ ∈ K we have φπ′(π′′) = φπ′′(π′′) = φπ(π′′) so we have
φπ′(π′′) = φπ(π′′) for any uniformizer π′′ and since the set of uniformizers generate
K× we deduce that φπ = φπ′ we then denote this map φK . �

To finish the proof of Theorem 1.1 we have to prove that LK = Kab and φK satisfies
the second property (ii).

5.1. Partial proof of Kab = LK.

The Frobenius map Frob is defined on Kur which is a sub-extension of Kab, then
using Steiniz’s theorem there exists a lift ϕ ∈ Gal(Kab/K) such that ϕ|Kur = Frob.
Let Lϕ the field of elements in Kab fixed by ϕ. Obviously, since Gal(Kur/K) is
generated by Frob we have Kur ∩Lϕ = K. We have the following preliminary result.

Lemma 5.3. Lϕ.Kur = Kab.
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Proof. Let Lϕ ⊂ L ⊂ Kab an intermediate extension such that [L : Lϕ] = n is finite.
We want to show that L = Lϕ.Kn. Now let L′ = Lϕ.Kn and L′′ = L.Kn recall that
Kn is the unique unramified extension of K of degree n. Since Lϕ ∩ Kur = K we
have [L′ : Lϕ] = [Kn : K] = n. Then L′′ is a finite extension of Lϕ and it contains
two sub-extensions of Lϕ of degree n which are L and L′. Since Lϕ is by definition
the field of elements fixed by ϕ, the group Gal(L′′/Fϕ) must be cyclic generated by
ϕ|L′′ (otherwise ϕ would fix a larger field than Lϕ). Since the extension L′′ contains
two extensions L and L′ of the same degree, their Galois groups of of the same order
are are subgroups of the same cyclic group, thus they are equal. We then deduce
that L = KnL

ϕ. This being true for any finite extension L/Lϕ we deduce that
Lϕ.Kur = Kab �

Thanks to Lemma 5.3, to show that Kab = Kπ.K
ur it suffices to show that Kπ = Lϕ

for some choice of extension ϕ of the Frobenius automorphism to Kab.

By definition the map φK (which we have denoted φπ until proven independent of
π) satisfies φK(x)|Kur = Frobm for x ∈ K× and m := vK(x). Then its image φK(K×)
consists of elements σ in Gal(LK/K) such that σ|Kur is a power of the Frobenius map.
This is actually a dense set since the Frobenius map generates Gal(Kur/K) = Ẑ. We
denote σ = ϕ|LK . Since Kur ⊂ LK the automorphism σ of LK is a lifting of Frob
to LK and thus by definition of the map φK there exists π a uniformizer such that
σ = φK(π) which depends on the original lifting ϕ. Since the element σ = ϕ|LK fixes
the elements of Kπ (this can be seen from the definition of φK and the fact that
Kur ∩ Kπ = K) we have Kπ ⊂ Lϕ. Suppose that Lϕ is a strictly bigger field than
Kπ, then there exits a finite cyclic extension E/K such that E ⊂ Lϕ but E 6⊂ Kπ.
We then have E ∩ Kur = K and thus E is totally ramified. Now we define the
ramification groups Gi(E/K) = {σ ∈ Gal(E/K), vE(x − σ(x) ≥ i + 1)∀ x ∈ E} for
any i ≥ −1. Since E is totally ramified we know that Gal(E/K) = G0 and that
kE = k = Fq. Using the higher ramification group argument we know that [E : K] is
the product of q − 1 and a power of p. We have [E : E ∩Kπ,1] = [E.Kπ,1 : Kπ,1] is a
power of p and [E ∩Kπ,1 : K] is prime to p. We then deduce the existence of a cyclic
extension E ′ of K of p-power degree such that E ′ ∩ (E ∩ Kπ,1) = K and that also
satisfies E ′.(E ∩Kπ,1) = E. Clearly E ′ 6⊂ Kπ because E 6⊂ Kπ. It suffices to replace
E ′ if necessary by a subfield and we then get a cyclic p-power extension E ′ such that
K ⊂ E ′ ⊂ Lϕ and [E ′ : E ′ ∩Kπ,1] = p.

Now to conclude the proof, we use the field E ′ to build a totally ramified cyclic
extension F/K that has degree p and satisfies N(F×) = K× which will contradict
this lemma whose proof is omitted (refer to [Rie06] for details)

Lemma 5.4. For any cyclic extension L/K of degree p we have N(F×) 6= K×.

All that remains is to build such an extension to conclude by contradiction that
Lϕ = Kπ. We shall not go further in the proof and we encourage the interested reader
to refer to [Rie06] for a detailed construction of F . We recall however our main goal
from all this discussion which was to prove that

Lϕ = Kπ

Armed with this information we see using Lemma 5.3 that Kab = Kπ.K
ur = LK .
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Proof property (ii) in Theorem 1.1 .

At this stage we have a map φK : K× −→ Gal(Kab/K) such that condition (i) of
Theorem 1.1 is satisfied before we prove that φK satisfies the second property (ii) we
first ask answer an interesting question which will help us on the long run.

Let L/K be a finite extension. Then L is also a local field and we then have a map
φL : L× −→ Gal(Lab/L) and the question is how does φL relate to φK? The following
theorem provides an answer.

Theorem 5.5. Let L/K a finite extension and φK , φL the maps built previously the
following diagram commutes

L× Gal(Lab/L)

K× Gal(Kab/K)

φL

NL/K ψ

φK

where ψ is the restriction map i.e φK(NL/K(x)) = φL(x)|Kab .

Proof. Omitted. Refer to [Rie06, Theorem 6.7] for a detailed proof. �

Using the theorem above it is no longer too difficult to show property (ii) in
Theorem 1.1 and for that we fix a finite abelian extension L/K. We define the
following map

φL/K : K× −→ Gal(L/K), x 7→ φK(x)|L

and we claim that the map φL/K induces an isomorphism K×/N(L×)
∼−→ Gal(L/K).

In fact from Theorem 5.5 we can deduce that Ker(φL/K) = N(L×). Since the image
of φK contains automorphisms σ such that σ|Kur is some power of the Frobenius map
it’s dense in the group Gal(Kur/K). Since Gal(Kab/L) is an open normal subgroup
of Gal(Kab/K) the map φL/K is surjective. This means that we can factorize φL/K
to an isomorphism K×/Ker(φL/K)

∼−→ Gal(L/K). We then conclude that he maps
φK induces an isomorphism K×/N(L×)

∼−→ Gal(L/K).

All that remains to show in Theorem 1.1 is the uniqueness of the map φK which
we will then denote ArtK for Artin’s map. To see uniqueness let φ be another map
satisfying the same conditions as φK . We have π ∈ N(K×π,n) for any n ≥ 1. Then
using the property (ii) we get φ(π)|Kπ,n and from this we deduce that φ|Kπ is the
identity map. The first property (i) implies φK(π)|Kur = φ(π)|Kur . Then we deduce
that φ(π) = φK(π) for any uniformizer. This means that φ = φK and hence the maps
φK is unique.

6. Summary and discussion

In this section we take a moment to summaries the steps we went through and to
think about the implications of the results that we have seen. First we knew that
there exits a maximal unramified extensions of K and in order to get a complete
description of Kab we needed to build totally ramified extensions. We then needed
Lubin-Tate’s formal groups to figure out which elements we need to adjoin to K
to produce unramified extensions and we had an OK-module structure on the sets
µn,f which allowed us to prove Theorm 4.2. From there we defined maximal totally
ramified extensions Kπ which turned out not to be canonical but we had however
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Kab = Kur.Kπ and Kur ∩Kπ = K. This allowed us to define the map φK which we
finally proved is the desired Artin map.

From theorem 1.1 we the following commutative diagram for any finite abelian
extension L/K

K× Gal(Kab/K)

K×/N(L×) Gal(L/K)

φ

σ 7→σ|L

∼

and we have an isomorphism K×/N(L×)
∼−→ Gal(L/K). Also, for any prime π ∈ K,

we have φ(π)|Kur is the Frobenius map.
One of the main application of the local Artin reciprocity is classifying Galois

extensions of local fields with a fixed abelian Galois group. We refer the reader to
[Mil] and [Ser13] for further reading.
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