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Abstract

Non-archimedean Excursions in
Probability, Number theory, Combinatorics and Geometry

by

Yassine El Maazouz

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Bernd Sturmfels, Chair

Similar to the field of real numbers R, which can be constructed as the completion of the
rational numbers with respect the usual absolute value | · |, the field of p-adic numbers Qp

is also the completion of the rational numbers with the p-adic absolute value | · |p. These
numbers were first introduced by Kurt Hensel to harness the power of analytic tools in
number theory, but nowadays non-archimedean mathematics has become a very rich and
active area of research in its own right. This thesis is composed of seven chapters whose
main theme is non-archimedean.

This dissertation begins with the first chapter in which we introduce some necessary back-
ground and concepts that are used throughout this thesis. In particular, we recall the notion
of valued fields and review some basic facts from non-archimedean algebra and analysis. We
then introduce the Euclidean building associated to the reductive group PGL, which will
appear throughout this thesis.

In the second chapter we study the entropy map for multivariate Gaussian distributions
on a non-archimedean local field. As in the real case, the image of this map lies in the
supermodular cone. Moreover, given a multivariate Gaussian measure on a local field, its
image under the entropy map determines its pushforward under the valuation map. In
general, this entropy map can be defined for non-archimedian valued fields whose valuation
group is an additive subgroup of the real line, and it remains supermodular. We also explicitly
compute the image of this map in dimension 3 and discuss non-archimedean statistical
Gaussian models.

In the third chapter we give a method for sampling points from an algebraic manifold (affine
or projective) over a local field with a prescribed probability distribution. In the spirit of
previous work by Breiding and Marigliano on real algebraic manifolds, our method is based
on slicing the given variety with random linear spaces of complementary dimension. We also
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provide an implementation of our sampling method and discuss a few applications. In one
application, we sample from algebraic p-adic matrix groups and modular curves.

In the fourth chapter, we introduce a novel characterization of Bernoulli polynomials by
circular convolution. There is a combinatorial and probabilistic model underlying this char-
acterization which we call The Bernoulli clock. We use this model to give a probabilistic
perspective to the work of Horton and Kurn [91] and the more recent work of Clifton et
al. [33] on counting permutations of the multiset 1m · · ·nm with longest continuous and
increasing subsequence of length n starting from 1.

In the fifth chapter we apply tropical geometry to study matrix algebras over a field with
valuation. Using the shapes of min-max convexity, known as polytropes, we revisit the grad-
uated orders introduced by Plesken and Zassenhaus. These are classified by the polytrope
region. We also advance the ideal theory of graduated orders by introducing their ideal
class polytropes. We then extend our study to bolytropes and bolytrope orders. Bolytropes
are bounded subsets of an affine building that consist of all points that have distance at
most r from some polytrope. We prove that the points of a bolytrope describe the set of all
invariant lattices of a bolytrope order, generalizing the correspondence between polytropes
and graduated orders.

In the sixth chapter, we study non-archimedean Schur representations and their invariant
lattices. More precisely, fix a non-archimedean discretely valued field K and let OK be its
valuation ring. Given a vector space V of dimension n over K and a partition λ of an integer
d, we study the problem of determining the invariant lattices in the Schur module Sλ(V )
under the action of the group GL(n,OK). When K is a non-archimedean local field, our
results determine the GL(n,OK)-invariant Gaussian distributions on Sλ(V ).

Finally, in the seventh chapter, we turn to arithmetic geometry. We express the reduction
types of Picard curves in terms of tropical invariants associated to binary quintics. These
invariants are connected to Picard modular forms using recent work [32] of Cléry and van der
Geer. We furthermore give a general framework for tropical invariants associated to group
actions on arbitrary varieties. The problem of describing reduction types of curves in terms
of their associated invariants fits in this general framework by mapping the space of binary
forms to symmetrized versions of the Deligne–Mumford compactification M0,n.
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Chapter 1

Background and introduction

This chapter is meant to collect some basic notions and background in non-archimedean
algebra and analysis, and briefly introcude the Bruhat-Tits building associated to the re-
ductive group PGL which will be used repeatedly in the remaining chapters. Unless it is
necessary for our later discussions, we shall not give proofs for any stated result. Instead we
shall refer the reader to more complete and authoritative sources whenever necessary.

1.1 Non-archimedean algebra and analysis

The material in this section is well known and can be found for example in [57, 144, 146]

1.1.1 Valued fields

Let us start by introducing the notion of a (non-archimedean) valued field, which is a
central object in our study.

Definition 1.1. A valued field (K, | · |) is a field K together with a map | · | : K → R+

satisfying the following three conditions for any x, y ∈ K:

(i) |x| = 0 if and only if x = 0, (separation),

(ii) |xy| = |x||y|, (multiplicativity),

(iii) |x+ y| ≤ |x|+ |y| (triangle inequality).

The map | · | is called an absolute value. It is also referred to as a norm or multiplicative
valuation on K.

Example 1.2. The field R of real numbers together with its usual absolute value is a valued
field, as is the field C with the usual modulus map | · |.

Definition 1.3. Let (K, | · |) be a valued field. A non-zero element x ∈ K is called
archimedean if the set {|nx| = |x+. . .+x| : n ∈ N} is unbounded in R+, and non-archimedean
otherwise.
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Notice that, thanks to the multiplicativity of the absolute value, a non-zero x ∈ K is
archimedean if and only if 1 is archimedean. When 1 ∈ K is archimedean, the field K is
called an archimedean valued field, and it is called non-archimedean otherwise.

Example 1.4. 1. Let K be any field and let |·|triv be the trivial norm on K i.e. |x|triv = 1
for any non-zero x ∈ K. The valued field (K, | · |triv) is non-archimedean.

2. The fields R,C endowed with their usual absolute value are archimedean fields.

Proposition 1.5. Let (K, | · |) be a valued field. K is non-archimedean if and only if the
absolute value is ultrametric; that is

|x+ y| ≤ max(|x|, |y|), for any x, y ∈ K. (1.1)

If (K, | · |) is a valued field, the absolute value | · | endows K with the structure of a metric
space with the distance given by

d(x, y) = |x− y| for x, y ∈ K,

and hence also with the corresponding topology (for which K is a topological field).

Proposition 1.6. Let (K, | · |) be a non-archimedean valued field. The map val : K× → R
given by val(x) = − log(|x|) is a group homomorphism. Moreover, with the convention
val(0) = +∞, we have:

val(x+ y) ≥ min(val(x), val(y)), for x, y ∈ K.

When the valued field (K, | · |) is non-archimedean, the map val is called an additive
valuation on K. In this case the unit ball

OK := {x ∈ K : |x| ≤ 1}
= {x ∈ K : val(x) ≥ 0},

is a local subring of K; that is OK has a unique maximal ideal which is

mK := {x ∈ K : |x| < 1}
= {x ∈ K : val(x) > 0}.

The ring OK is called the valuation ring of (K, | · |) and the group of units of OK is the unit
circle

O×K := {x ∈ K : |x| = 1}
= {x ∈ K : val(x) = 0}.

The ideal mK being maximal, the quotient k := OK/mK is a field which is called the residue
field of K.
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Remark 1.7. The field of fractions of the ring OK is exactly the field K.

It is known that the completion of K (as a metric space) is a valued field which we denote

by K̂ endowed with the absolute value

|[(xn)]| := lim
n→∞

|xn|,

for any equivalence class [(xn)] ∈ K̂ of Cauchy sequences in K. The valuation ring of the

field K̂ is the completion ÔK of OK and the residue field of K̂ is isomorphic to the residue
field of K.

Example 1.8. (The p-adic numbers) In this example we introduce the fundamental proto-
type of a local field which will appear numerous times in the next chapters.

Let p be a prime number and let us define an absolute | · |p value on Q as follows: for
any non-zero rational r ∈ Q, write r = pnr′ with n ∈ Z and r′ = a′/b′ with a′, b′ are coprime
integers that are not divisible by p. We then define the p-adic absolute value of r as

|r|p = p−n.

Together with |0|p = 0, this defines an absolute value on Q and (Q, |·|p) is a non-archimedean
valued field with an additive valuation

valp : Q→ Z ∪ {+∞}, r 7→ − log(|r|p).

The valuation ring of (Q, | · |p) is the local ring

Z(p) =
{a
b

: a, b ∈ Z and b is not divisible by p
}
,

its unique maximal ideal is pZ(p) and the residue field is the finite field with p elements:

Z(p)/pZ(p) = Z/pZ.

The field Q is not complete with respect to | · |p. Its completion, which we usually denote
by Qp, is called the field of p-adic numbers. Any element x ∈ Qp can be written uniquely in
the form

x =
+∞∑

n=valp(x)

anp
n,

with an ∈ {0, 1, . . . , p − 1} for n ≥ valp(x). The valuation ring of Qp is the ring of p-adic
integers

Zp =

{
+∞∑
n=0

anp
n : 0 ≤ an ≤ p− 1

}
= lim
←n

Z/pnZ,

and its residue field is Zp/pZp = Z/pZ.
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Remark 1.9. We say that two absolute values on a field K are equivalent if they define the
same metric topology on K. It turns out that, if | · | is an absolute value on Q, it is then
equivalent to either the usual1 absolute value | · |∞, or to a p-adic absolute value | · |p for
some prime p.

1.1.2 Local fields

Local fields are a very important class of valued fields. They arise quite naturally in
number theory as completions of number fields with respect to some valuation. In this
section, we shall only see a few basic concepts which we will need in later chapters. There is
an extensive literature on local fields in number theory [29], analysis [140, 144], representation
theory [36].

Definition 1.10. A valued field (K, | · |) is called a local field if it is locally compact, non-
discrete as a topological field.

Let (K, | · |) be a local field. Since K is a locally compact topological field, there exists a
unique Haar measure µ on K with µ(OK) = 1; that is a measure µ (defined on Borel subset
of K as a metric space) such that

µ(OK) = 1 and µ(x+ A) = µ(A) for any x ∈ K and any Borel set A ⊂ K.

Remark 1.11. Let x ∈ K and let us define the measure νx on K as follows

νx(A) = µ(xA), for any Borel set A.

The measure νx is also a Haar measure on K so2 there exists ∆(x) ≥ 0 such that

νx = ∆(x)µ.

The map ∆: K → R+ is called the modulus of K. It turns out that ∆ = | · | is the absolute
value in K i.e. we can recover the absolute value | · | as follows:

|x| = µ(xOK), for x ∈ K.

Example 1.12. 1. The fields of real and complex numbers R and C are local fields.

2. The field of p-adic numbers is also a local field since Zp is a compact and open set in
Qp.

1The notation | · |∞ signifies that the usual absolute value on Q corresponds to ”a prime at infinity”.
2Since the Haar measure on a an abelian topological is unique up to scaling.
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3. Let Fp((ϖ)) be the field of Laurent series in one variables ϖ with coefficients in the
finite field with p elements Fp. Elements of this field are formal series of the form

x =
+∞∑
n=v

anϖ
n, with v ∈ Z and an ∈ Fp for n ≥ v.

The valuation and absolute value of such an element can be defined as

val(x) = inf{n ≥ v : an ̸= 0} and |x| = p− val(x),

and the valuation ring is the ring of power series

Fp[[ϖ]] = lim
←n

Fp[ϖ]/ϖnFp[ϖ].

Endowed with this valuation, Fp((ϖ)) is a local field of positive characteristic.

It turns out that the fields listed in Example 1.12 are essentially all the possible local
fields in the following sense.

Theorem 1.13. Let (K, | · |) be a local field. Then the following holds

(i) If K is archimedean, then K is isomorphic (algebraically and analytically) to R or C.

(ii) If K is non-archimedean and char(K) = 0, then K is isomorphic (algebraically and
analytically) to a finite field extension of Qp.

(iii) If K is non-archimedean and char(K) > 0, then K is isomorphic (algebraically and
analytically) to a finite field extension of Fp((ϖ)).

Remark 1.14. Since our main focus will be non-archimedean local fields, in the remaining
of this dissertation we refer to non-archimedean local fields simply as local fields.

When K is a local field, the maximal ideal mK is monogenic in OK (i.e. principal and
generated by one element). If ϖ ∈ OK is such a generator, that is mK = ϖOK , we call ϖ
a uniformizer of K. It follows from Theorem 1.13 that the residue field k = OK/ϖOK of a
local field K is finite.

Proposition 1.15. Let K be a non-archimedean local field and fix a uniformizer ϖ of K.
Let k = OK/ϖOK be the residue field and T ⊂ OK a set of representative of elements of k
such that 0 ∈ T . Then, any non-zero element x ∈ K can be uniquely written in the form

x =
+∞∑
n≥v

xnϖ
n, with v ∈ Z, xn ∈ T and xv ̸= 0.

The valuation of such an element x is then v ∈ Z.

Remark 1.16. Similar to the archimedean local fields R and C, Fourier theory can also
be carried out on any non-archimedean local field, see [159]. This theory is very fruitful in
characterizing Gaussian measures over a non-archimedean local field, see [65].
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1.1.3 Non-archimedean orthogonality

In this section, we introduce the notion of non-archimedean orthogonality. This concept
will be later useful to define Gaussian measures over local fields as in [65]. The material in
this section can be found with more details in [140, Chapter 5].

Let K be a non-archimedean local field with normalized valuation val : K → Z ∪ {+∞}
and fix a uniformizer ϖ of K. Let (E, ∥·∥) be a be a finite dimensionl vector space over K
and n := dimK(E). It is know that, since | · | is ultrametric, the norm ∥·∥ is also ultrametric
i.e.

∥u+ v∥ ≤ max(∥u∥ , ∥v∥), for any u, v ∈ E.
The norm ∥·∥ induces an additive valuation on E defined as follows

val(x) := − log(∥x∥), for x ∈ E.

The valuation val satisfies the following properties

(1) val(x) = +∞ if and only if x = 0, for all x ∈ E,
(2) val(αx) = val(α) + val(x), for all α ∈ K, x ∈ E,
(3) val(x+ y) ≥ min(val(x), val(y)), for all x, y ∈ E.

Let Λ be denote the unit ball in E i.e.

Λ := {x ∈ E : ∥x∥ ≤ 1}.

Then Λ is an OK-submodule of E and Λ spans E as a vector space over K.

Remark 1.17. Let L be an OK-submodule of E such that L generates E over K (L is called
a lattice in E). The lattice L defines an additive valuation valL on E defined as follows

valL(x) := sup
{
m ∈ Z : ϖ−mx ∈ L

}
, x ∈ E.

This valuation in turn defines a norm ∥·∥L on E

∥x∥L := q− valL(x), for any x ∈ E.

We then see that there is a correspondence between lattices in E and norms on E. We refer
to [166, Chapter 2] for more details.

Definition 1.18. Let (xi)i∈I be a family of non-zero vectors in E index by some set I. We
say that the family (xi)i∈I is orthogonal in (E, ∥·∥) if for any finite subset J ⊂ I we have∥∥∥∥∥∑

j∈J

αjxj

∥∥∥∥∥ = max
j∈J
|αj| ∥xj∥ , for any choice of scalars αj ∈ K.

We say that (xi)i∈I is orthonormal if it is orthogonal and ∥xi∥ = 1 for all i ∈ I.
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Remark 1.19. Notice that if a family (xi)i∈I is orthonormal then it is necessarily linearly
independent over K. Notice also that if a vector x ∈ E has norm 1 then x ∈ Λ and the
reduction x of x modulo ϖΛ is nonzero.

The following proposition provides a practical criterion of orthogonality.

Proposition 1.20. Let (xi)i∈I ∈ E be a family of vectors of norm 1 i.e. ∥xi∥ = 1 for any
i ∈ I. Then (xi)i∈I is orthogonal if and only if the reductions xi modulo ϖΛ of the xi’s are
linearly independent over the residue field k i.e.

(xi)i∈I is linearly independent over k = OK/ϖOK .

A family (e1, . . . , en) is an orthonormal basis of E if and only if it is an OK-basis of Λ as
an OK-module i.e.

Λ = OKe1 ⊕ . . .⊕OKen.

Definition 1.21. We define the orthogonal group GL(Λ) of (E, ∥·∥ ,Λ) as follows

GL(Λ) := {g ∈ GL(E) : gΛ = Λ}
= {g ∈ GL(E) : ∥gx∥ = ∥x∥ , for any x ∈ E}.

Remark 1.22. The group GL(Λ) is a compact topological group.

Let us fix a basis e1, . . . , en of E and endow E with the structure of a normed vector
space with the lattice

Λ = OKe1 ⊕ . . .⊕OKen,

i.e. the corresponding norm ∥·∥ is given by

∥x∥ = max
1≤i≤n

|xi|, for any x = x1e1 + . . .+ xnen ∈ E.

Through the choice of basis e1, . . . , en, we identify E with Kn and Λ with the lattice On
K .

The orthogonal group GL(Λ) in Definition 1.21 is then

GL(On
K) := {g ∈ GL(n,K) : gOn

K = On
K}

= {g ∈ GL(n,K) : ∥gx∥ = ∥x∥ for all x ∈ Kn}
= {g ∈ GL(n,K) : g ∈ On×n

K and det(g) ∈ O×K}
= GL(n,OK).

Remark 1.23. 1. The orthogonal group GL(n,OK) is also the group of matrices in Kn×n

with orthonormal rows and columns.

2. The group GL(n,OK) (the orthogonal group associated to the lattice On
K) is a maximal

compact subgroup of GL(n,K). Any other maximal compact subgroup of GL(n,K) is
of the form GL(L) for some lattice L ⊂ Kn and is conjugate to GL(n,OK).
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Let E∨ be the dual of E; that is E∨ = HomK(E,K) is the vector space of linear forms
on E. Each lattice L in E has a corresponding dual lattice L∨ := HomOK

(L,OK) in E∨. So
if (E, ∥·∥) is a normed vector space with unit ball Λ, the dual space E∨ can also be normed
in a natural way by setting its unit ball to be Λ∨.

The following result is a non-archimedean analogue of singular value decomposition for
matrices with real entries, which can be found in [62, Theorem 3.1] for example.

Proposition 1.24 (Singular value decomposition or Smith normal form). Let F be a non-
archimedean discretely valued field and fix a uniformizer ϖ of F . Let n and m be positive
integers and let A be an n×m matrix with entries in F . Then we can write A in the form

A = UDV,

for some U ∈ GL(n,OF ), V ∈ GL(m,OF ) and D = diag(ϖr1 , . . . , ϖrmin(n,m)) ∈ F n×m such
that r1 ≥ . . . ≥ rmin(n,m) ∈ Z.

1.1.4 Gaussian measures over local fields

In this section we leverage the notion of non-archimedean orthogonality allows us to
define Gaussian measures over a local field following [65]. Let K be a non-archimedean local
field and (E, ∥·∥ ,Λ) a finite dimensional normed3 vector space over K. We endow E with
the Borel σ-algebra given by ∥·∥ (i.e. the σ-algebra generated by open sets in E). If ν and
µ are two probability measures on E and a ∈ K× we denote by

1. aµ the probability measure4 on E given by

(aµ)(A) = µ(a−1A), for any borel set A ⊂ E.

2. µ⊗ ν the product probability measure on E × E defined by

(µ⊗ ν)(A×B) = µ(A)ν(B), for any Borel sets A,B ⊂ E.

3. µ∗ν the convolution of µ and ν; that is the pushforward of the measure µ⊗ν on E×E
under the addition map

E × E → E, (x, y) 7→ x+ y.

Definition 1.25 (Definition 4.1 of [65]). Let P be a probability distribution on E. We say
that P is a Gaussian distribution if

P⊗ P = (g11P ∗ g12P)⊗ (g21P ∗ g22P), for any g =

(
g11 g12
g21 g22

)
∈ GL(2,OK).

3Λ is the unit ball of ∥·∥ as in Section 1.1.3.
4By convention, when a = 0, aµ is the Dirac measure in 0 i.e. (aµ)(A) = 1[0 ∈ A].
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Equivalently, a random variable X with values in E is called Gaussian if whenever Y is an
independent copy of X, the two vectors(

X
Y

)
and

(
g11X + g12Y
g21X + g22Y

)
have the same distribution in E × E for any g =

(
g11 g12
g21 g22

)
∈ GL(2,OK).

Remark 1.26. Definition 1.25 mimics Kac’s characterization [98] of Gaussian distributions
on Euclidean spaces (which goes back to James Clerk Maxwell’s derivation of the velocity
distribution for ideal gases):

A random variable X is Gaussian in Rn if and only if when Y is an independent
copy of X the following two vectors:(

X
Y

)
and

(
g11X + g12Y
g21X + g22Y

)
have the same distribution in Rn × Rn for any g =

(
g11 g12
g21 g22

)
∈ O(2,R).

Following Definition 1.25 the Fourier transform of a Gaussian distribution on E should
satisfy a certain invariance in the form of a functional equation. Solving this functional
equation yields the following practical description of E-valued Gaussian measures.

Theorem 1.27 (Theorems 4.2 and 4.4 in [65]). Let X be a random variable with values
in E. Then X is Gaussian if and only if the distribution of X is the normalized Haar
measure on an OK-submodule of E; that is there exists an OK-submodule L of E such that
the distribution of X is

P(X ∈ dx) =
1[x ∈ L]

µ(L)
µ(dx),

where µ is any non-zero Haar measure5 on L.

Remark 1.28. In the setting of Theorem 1.27 the law of each Gaussian distribution on E
is completely specified by a lattice L. This is analogous to the setting of euclidean spaces,
where the law of each centered Gaussian in Rd is completely specified by its covariance
matrix. We note that for Gaussians over a local field the mean is not well-defined [65], so
lattices in Kd are indeed the central objects of the theory of Gaussian over K.

Definition 1.29. We say that a Gaussian measure on E is non-degenerate if its correspond-
ing submodule has full rank in E; i.e. is a lattice. We call standard Gaussian distribution
on E the Gaussian distribution corresponding to the unit ball Λ; that is the distribution

1[x ∈ Λ]

µ(Λ)
µ(dx)

5Which exists and is unique up to scaling since (L,+) is a compact topological abelian group.
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for some non-zero Haar measure on E.

As in the Euclidean setting, independence of Gaussians is tightly linked to orthogonality
as the following theorem explains.

Theorem 1.30 (Adapted from Theorem 4.8 of [65]). Let X be a random variable with values
in E with standard Gaussian distribution. Let f1, . . . , fr ∈ E∨ be linear forms. Then the
K-valued random variables f1(X), . . . , fr(X) are independent if and only if the linear forms
f1, . . . , fr are orthogonal in E∨.

Through the choice of an OK-basis e1, . . . , en of Λ we can identify E with Kn. Then the
dual lattice Λ∨ has the dual basis e∨1 , . . . , e

∨
n through which we can identify E∨ with Kn.

Example 1.31. Suppose K = Q7, E = K4 and Λ is the standard lattice Z4
7. The space E

is then a normed space with unit ball Λ. Set A ∈ Q4×4
7 to be the following matrix

A =


12 314 234 34
12 343 55 67
25 54 65 65
61 461 430 328

 .
The rows of A define linear forms f1, . . . , f4 ∈ E∨ (the dual space E∨ is identified with Q4

7

thought the dual basis). Let us use Proposition 1.20 to test the orthogonality of the rows of
A. Every row in this matrix has norm 1 in E and modulo 7 the matrix becomes

A =


5 6 3 6
5 0 6 4
4 5 2 2
5 6 3 6

 ∈ F4×4
7 .

So if Z = (Z1, Z2, Z3, Z4)
⊤ is a Gaussian vector with uniform distribution on Z4

7 and Y = AZ
we can see by Theorem 1.30 that Y1, Y2, Y3 are independent but Y1, Y2, Y3, Y4 are not since
the first three rows of A are linearly independent over F7 but the matrix A is singular.

1.2 A step into the Bruhat-Tits building

Buildings are geometric and combinatorial structures that generalize certain aspects of
Riemannian symmetric spaces, see [94, 141]. These structures were introduced to understand
reductive algebraic groups via their action which is of interest in geometric group theory
[137, 136, 52, 55]. In this section we give a very brief introduction to the theory of buildings
through the lattice class model for the Bruhat-Tits building of the reductive group PGL
which will used repeatedly throughout this thesis. We refer the reader to [1] for more details
on buildings.
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Let K be a discretely valuated field with surjective valuation val : K → Z∪ {+∞}. The
valuation ring OK is the set of elements in K with non-negative valuation. Fix a uniformizer
ϖ of K. Then we denote by k the residue field k := OK/ϖOK .

We fix an integer d and consider the column space V = Kd. Since the ring OK is a
principal ideal domain, for any lattice L in V , there exists a basis (ϵ1, . . . , ϵd) of V such that
L =

⊕d
i=1OKϵi. An example of a lattice is the standard lattice L0 = Od

K spanned by the
standard basis (e1, . . . , ed). Two lattices L1 and L2 are called equivalent if there is some
u ∈ K× such that L2 = uL1. The equivalence class of L (also referred to as the homothety
class of L) is denoted by

[L] = {uL : u ∈ K×} = {ϖmL : m ∈ Z}.

Definition 1.32. The affine building Bd(K) associated to the reductive algebraic group
PGL(d,K) is a simplicial complex whose vertices are the equivalence classes [L] of lattices
L in E. A set of vertices {[L1], . . . , [Ls+1]} is an s-simplex in Bd(K) if and only if there exist

representatives L̃i ∈ [Li] and a permutation σ of {1, . . . , s+ 1} such that

ϖL̃σ(1) ⊊ L̃σ(s+1) ⊊ · · · ⊊ L̃σ(1) ⊊ L̃σ(1).

The maximal simplices {[L1], . . . , [Ld]} in Bd(K) are called chambers. Given a basis g =
(g1, . . . , gd) of V , the apartment defined by g ∈ GL(d,K) is the set of homothety classes of
lattices [L] where L is of the form

L = ϖu1OKg1 ⊕ · · · ⊕ϖudOKgd, with u1, . . . , ud ∈ Z.

The standard apartment is the apartment associated to the standard basis (e1, . . . , ed) of
V = Kd. If L is a lattice such that [L] belongs to the standard apartment i.e.

L = ϖu1OKe1 ⊕ · · · ⊕ϖudOKed, for some u1, . . . , ud ∈ Z,

we call u = (u1, . . . , ud) the exponent vector of L and write L(u) to denote L.

Remark 1.33. Notice that if ϖL1 ⊊ Ls ⊊ · · · ⊂ L1 ⊊ L1 for lattices L1, . . . , Ls then we
have the following sequence of nested vector spaces over the residue field k

0 ⊊ Ls/ϖL1 ⊊ · · · ⊂ L1/ϖL1 ⊊ L1/ϖL1
∼= kd.

Since dimk(L1/ϖL1) = d, such a sequence has length as most d so the maximal simplices in
Bd(K) are of dimension d− 1.

Remark 1.34. When K is a local field, from Section 1.1.4, points of Bd(K) parametrize (up-
to scaling) non-degenerate Gaussian measures on V = Kd. Points in the standard apartment
parameterize (up-to scaling) Gaussian distributions P such that, if X is a Gaussian vector
distributed under P, its coordinates in the standard basis are independent random variables.
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The general linear group GL(d,K) acts (from the left) on Bd(K) preserving the simplicial
structure 6. This action is transitive on the lattice classes and also transitive on the chambers.
The stabilizer of the lattice L0 is the subgroup

GL(d,OK) = {g ∈ Od×d
K : val(det(g)) = 0}

and the stabilizer of the standard chamber is the Iwahori subgroup

B := {g ∈ GL(d,OK) : val(gij) > 0 if i < j}.

Using the GL(d,K)-action allows us to define the type of a lattice class. Fixing the standard
lattice L0 the type of [gL0] is val(det(g)) + dZ ∈ Z/dZ = {0, 1, 2, . . . , d− 1}. In particular in
the standard chamber, the type of [Li] is i and in the standard apartment, the type of L(u)
is u1 + . . .+ ud + dZ ∈ Z/dZ.

The type preserving automorphisms of Bd(K) form the group

VSLd(K) := {g ∈ GLd(K) : val(det(g)) = 0}.

Two chambers are called adjacent, if they share a common d− 2-dimensional simplex.

(1,0,-1)

s0(C0) (1,0,0)

(1,1,0)

(0,0,0)

C0 (1,0,1)s2(C0)

(0,1,0)

s1(C0)

(0,1,1)

(0,0,1)

Figure 1.1: The standard chamber and its neighbors in the standard apartment in B3(K).

The standard chamber is the simplex given with vertices [M0], . . . , [Md−1] defined by

Mi = ϖOKe1 ⊕ . . .⊕ϖOKei ⊕OKei+1 ⊕ . . .⊕OKed for 1 ≤ i ≤ d− 1

and
M0 = OKe1 ⊕ . . .⊕OKed.

6Since the 0-simplices are homothety classes of lattices, this action factors through PGL(d,K).
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Starting from the standard chamber C0, there exist standard reflections s0, s1, . . . , sd−1 map-
ping C0 to all the d adjacent chambers in the standard apartment which are given as follows.
For i = 1, . . . , d− 1 we define si on the standard basis by

si(ej) =


ej if j ̸= i, i+ 1
ei if j = i+ 1
ei+1 if j = i.

The map s0 is defined by s0(ei) = ei for i = 2, . . . , d− 1 and s0(ed) = ϖe1, s0(e1) = ϖ−1ed.
Then the set {s0, . . . , sd−1} forms a set of Coxeter generators for the affine Weyl group

W = ⟨s0, . . . , sd−1⟩ ≤ VSLd(K).

This group W acts regularly on the chambers in the standard apartment [22, § 1.5, Thm. 2],
i.e. for every chamber C in the standard apartment, there is a unique w ∈ W such that
C = wC0. The group W contains the group D of all diagonal matrices diag(ϖa1 , . . . , ϖad)
with ai ∈ Z and

∑d
i=1 ai = 0, as a normal subgroup. In fact, W is isomorphic to the

semidirect product of D with the symmetric group Sd of degree d; in symbols W ∼= D⋊ Sd.
The famous Gauss-Bruhat decomposition then translates to

VSLd(K) =
⋃
w∈W

BwB.

We end this section by defining a notion of min and max convexity on the Bruhat-
Tits building Bn(K). This notion was originally introduced by Faltings to study toroidal
resolutions [70] and it appears in the context of Mustafin varieties [27, 85] (see also [169,
Section 2.1]) and is tightly linked to tropical convexity in the sense of [96].

Definition 1.35. A set of vertices S = {[L1], . . . , [Ls]} is min-convex (resp. max-convex ) if

for every pair of indices 1 ≤ i ̸= j ≤ s and representatives L̃i ∈ [Li] and L̃j ∈ [Lj], we have

[L̃i ∩ L̃j] ∈ S ( resp. [L̃i + L̃j] ∈ S). The set S is called convex if its is both min and max
convex.

Figure 1.2: A convex set in the building B2(Q2) (the set of vertices colored in blue).
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1.3 Overview and contributions of this dissertation

Having introduced some necessary background, let us now give an overview of the main
results of this dissertation. Our presentation is divided into two main parts: Probability
and Number theory, combinatorics and geometry.

1.3.1 Probability

The first part of this dissertation consists of chapters 2 to 4, which tackle problems of
probabilistic nature. In more detail, this part consists of

1. Chapter 2 which is based on [54] is joint work with Ngoc Tran and on the sequel [48]
to appear in the journal Algebraic statistics. In this chapter, we study the entropy
map for multivariate Gaussian distributions on a non-archimedean local field. As in
the real case, the image of this map lies in the supermodular cone. Moreover, given
a multivariate Gaussian measure on a local field, its image under the entropy map
determines its pushforward under the valuation map. In general, this map can be
defined for non-archimedian valued fields whose valuation group is an additive subgroup
of the real line, and it remains supermodular. We also explicitly compute the image
of this map in dimension 3 and discuss a several non-archimedean statistical Gaussian
models.

2. Chapter 3 which is based on joint work [50] with Enis Kaya. In this chapter, we present
a method to sample from algebraic manifolds (embedded in some projective or affine
space) defined over a local field. Our method is inspired but the work of Breiding and
Marigliano [23] on sampling from real algebraic manifolds. In a nutshell, this method is
based on slicing the manifold in question with random linear spaces of complementary
dimension, then sampling from the resulting finite intersection using a suitable weight
function.

3. Chapter 4 which is based on [53] which is joint work with Jim Pitman. In this chapter,
we introduce a novel characterization of Bernoulli polynomials by circular convolution.
There is a combinatorial and probabilistic model underlying this characterization which
we call The Bernoulli clock. We use this model to give a probabilistic perspective to
the work of Horton and Kurn [91] and the more recent work of Clifton et al. [33] on
counting permutations of the multiset 1m . . . nm with longest continuous and increasing
subsequence of length n starting from 1.

1.3.2 Number theory, combinatorics and geometry

The second part of this dissertation consists of chapters 5 to 7 which tackle problems in
number theory, combinatorics and geometry. In more detail, this part consists of
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1. Chapter 5 which is based on joint work [55] with Marvin A. Hahn, Gabriele Nebe,
Mima Stanojkovski and Bernd Sturmfels, and its sequel [52], which is joint work with
Gabriele Nebe and Mima Stanojkovski. In this chapter, we study orders in the ring
of matrices over a non-archimedean discretely valued field and their action of the
Bruhat-Tits building. Namely, we study graduated orders in the sense of [133] using
the modern language of tropical geometry, and extend our study to a bigger class of
orders for which we coined the term bolytrope orders. In particular, we describe the
set of fixed points of these orders in the Bruhat-Tits building.

2. Chapter 6 which is based joint work [51] with Antonio Lerario. In this chapter, given a
non-archimedean discretely valued field K whose valuation ring is R, an vector space V
of dimension n over K and a partition λ of a positive integer d, we study the problem
of determining the set of GL(n,R)-invariant lattices in the Schur module Sλ(V ). This
chapter leverages some results that are established in Chapter 5.

3. Chapter 7 which is based in joint work [49] with Paul A. Helminck and Enis Kaya.
In this chapter we express the reduction types of Picard curves in terms of tropical
invariants associated to binary quintics. These invariants are connected to Picard
modular forms using recent work by Cléry and van der Geer. We furthermore give
a general framework for tropical invariants associated to group actions on arbitrary
varieties. The problem of describing reduction types of curves in terms of their associ-
ated invariants fits in this general framework by mapping the space of binary forms to
symmetrized versions of the Deligne–Mumford compactification M̄0,n. We conjecture
that the techniques introduced here can be used to find tropical invariants for binary
forms of any degree.
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Part I

Probability
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Chapter 2

Entropy and statistics of Gaussian
measures on local fields.

This chapter is based on joint work [54] with Ngoc Tran and the sequel [48]. This chapter
is to appear in modified form in the journal Algebraic statistics.

2.1 Introduction and notation

Gaussian measures on local fields are introduced in [65]. In this text, we aim to exhibit
the entropy map of these measures and discuss the properties this map satisfies. Our aim
is to highlight the similarities with the real case. Before we discuss Gaussian measures on
local fields (see Section 2.2), we begin by reviewing the entropy map in the real setting.

2.1.1 Entropy of real multivariate Gaussian distributions

For a positive integer d, multivariate Gaussian distributions on Rd are determined by
their mean µ ∈ Rd and their positive semi-definite covariance matrix Σ ∈ Rd×d. Hence the
natural parameter space for centered (i.e with zero mean) Gaussian distributions on Rd is
the positive semi-definite cone in Rd×d, which we denote by

PSDd := {Σ ∈ Symd(R) : ⟨x,Σx⟩ ≥ 0 for all x ∈ Rd},

where Symd(R) is the space of real symmetric matrices in Rd×d and ⟨·, ·⟩ is the usual inner
product on Rd. Non-degenerate Gaussian distributions are those whose covariance matrix
Σ is positive definite, i.e, Σ ∈ PDd where

PDd := PSD◦d = {Σ ∈ Symd(R) : ⟨x,Σx⟩ > 0 for all non zero x ∈ Rd}.

There is no shortage of instances where the PSD cone appears in probability and statistics
[156], optimization [122, Chapter 12] and combinatorics [79].
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The positive definite cone has a pleasant group-theoretic structure in the sense that its
elements are in one-to-one correspondence with left cosets of the orthogonal group O(d,R) in
the general linear group GL(d,R). The map sending the coset AO(d,R) ∈ GL(d,R)/O(d,R)
to AAT ∈ PDd is a bijection. This underscores the fact that multivariate Gaussians are
tightly linked to the linearity and orthogonality structures that the Euclidean space Rd

enjoys.
An important concept in statistics, probability, and information theory is the notion of

entropy, which is a measure of uncertainty and disorder in a distribution; see [120]. The
entropy of a centered multivariate Gaussian with covariance matrix Σ is given, up to an
additive constant, by

h(Σ) = − log(| det(Σ)|) = − log(det Σ).

If X is a random vector in Rd with non-degenerate centered Gaussian distribution given
by a covariance matrix Σ ∈ PDd, then for any subset I of [d] := {1, 2, . . . , d} the vector
XI of coordinates of X indexed by I is also a random vector with non-degenerate Gaussian
measure on R|I|. Moreover, its covariance matrix is ΣI = (Σi,j)i,j∈I ∈ R|I|×|I|, so we can
define the entropy hI(Σ) of XI as

hI(Σ) := h(ΣI) = − log(det(ΣI)).

The collection of entropy values (hI(Σ))I⊂[d] satisfies the inequalities

hI(Σ) + hJ(Σ) ≤ hI∩J(Σ) + hI∪J(Σ) for any two subsets I, J ⊂ [d]. (2.1)

This is thanks to what is known as Koteljanskii’s inequalities [103] on the determinants of
positive definite matrices, i.e,

det(ΣI) det(ΣJ) ≥ det(ΣI∩J) det(ΣI∪J). (2.2)

In the language of polyhedral geometry this means that the image of the entropy map

H : PDd −→ R2d

Σ 7→ (hI(Σ))I⊂[d]
(2.3)

lies inside the supermodular cone Sd in R2d . This is the polyhedral cone specified by the
inequalities in (2.1), i.e,

Sd := {x = (xI)I⊂[d] ∈ R2d : x∅ = 0 and xI + xJ ≤ xI∩J + xI∪J for all I, J ⊂ [d]}.

Since x∅ = 0 for x ∈ Sd we can see Sd as a cone in R2d−1.
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2.1.2 Main results

In this chapter we deal with multivariate Gaussian distributions on local fields as defined
in Section 1.1.4, and more generally nonarchimedean valued fields. See Example 2.3 for a
discussion. In particular we shall define an analog to the entropy map and show that it
satisfies the same set of inequalities (2.1). More precisely we prove the following:

Theorem 2.1. The push-forward measure of a multivariate Gaussian measure on a local
field by the valuation map is given by a tropical polynomial whose coefficients are determined
by the entropy map of this measure (see Theorem 2.9). Moreover, these coefficients are
supermodular. The entropy map is still well-defined on non-archimedian valued fields in
general, and remains supermodular (see Theorem 2.13).

One motivation behind this chapter is the search for a suitable definition of tropical
Gaussian measures [162]. Tropical stochastics has been an active research area in the recent
years and has diverse applications from phylogenetics [113, 167] to game theory [6] and
economics [15, 163]. One appealing approach to define tropical Gaussians is to tropicalize
Gaussian measures on a valued field.

Our text is organized as follows. In Section 2.3 we show that tropicalizing multivariate
Gaussians on local fields yields probability measures on the lattice Zd that are determined by
the entropy map via a tropical polynomial. In Section 2.3.1 we show the supermodularity of
the entropy map and provide a recursive algorithm to compute it. In Section 2.4, we explain
why orthogonality is not a suitable approach to define Gaussian measures when the field K
is not locally compact. Nevertheless, we will see that the entropy map is still well defined
and remains supermodular and we explicitly compute its image when d = 3.

Implementations, computations and data related to this chapter are made available at

https://mathrepo.mis.mpg.de/GaussianEntropyMap/index.html. (2.4)

Remark 2.2. For readers not familiar with local fields, we refer to Section 1.1.2 or to
[100, 146] for a more detailed treatment. Local fields are not commonly used in statistics
and probability. However, in recent years there has been a stream of literature addressing
probabilistic and statistical questions in the p-adic setting, starting from the early work of
Evans [60, 65] to the more recent developments [28, 67, 105] to mention a few.

2.2 Background on valued fields and Gaussian

measures

This section is meant to establish some notation and recall the basic facts and result that
we will need in our discussion. Most of these results can be found in the literature on valued
fields in number theory [57, 146, 166] and functional analysis [140, 144] (see also Chapter 1
for a quick introduction).

https://mathrepo.mis.mpg.de/GaussianEntropyMap/index.html
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2.2.1 Valued fields

Let K be a field with an additive nonarchimedean valuation val : K −→ R ∪ {+∞}
with valuation group Γ := val(K×). The valuation map val defines an equivalence class of
exponential valuations or absolute values | · | on K via |x| := a− val(x) (where a ∈ (1,∞)) and
hence also a topology on K. The valuation val is called discrete if its valuation group Γ is a
discrete subgroup of R which, by scaling val suitably, we can always assume that Γ = Z (we
then call val a normalized valuation). In the discrete valuation case we fix a uniformizer ϖ
of K, i.e, an element ϖ ∈ K with val(ϖ) = 1. We denote by O := {x ∈ K, val(x) ≥ 0} the
valuation ring of K; this is a local ring with unique maximal ideal m := {x ∈ K, val(x) > 0}
and residue field k := O/m. When the valuation is discrete, the ideal m is generated in O
by ϖ i.e m := ϖO. We mention typical examples of such fields in Example 2.3.

Example 2.3. (1) The field Fq((t)) of Laurent series in one variable with coefficients in
the finite field Fq.

(2) The fields R((t)) or C((t)) of Laurent series with complex or real coefficients. These
are fields with an infinite residue field but still in discrete valuation Γ = Z.

(3) The fields R{{t}} = ∪n≥1R((t1/n)) and C{{t}} = ∪n≥1C((t1/n)) of Puiseux series in t.
In this case the valuation group Γ = Q is dense.

(4) The field of generalized Puiseux series K which has valuation group Γ = R. This field
consists of formal series f =

∑
α∈R aαt

α where supp(f) := {α ∈ R : aα ̸= 0} is either
finite or has +∞ as the only accumulation point; see [7].

(5) All the previous fields have the same characteristic as their residue fields. Interesting
examples in mixed characteristic are the field of p-adic numbers Qp where p is prime,
its algebraic closure Qp and the field of p-adic complex numbers Cp (completion of Qp).

2.2.1.1 Local fields

These are valued fields that are locally compact. In this section let us assume that K is
locally compact. It is then known that K is isomorphic to a finite field extension of Qp or
Fq((t)) and that its valuation group Γ is discrete in R, and its residue field k is finite. In
this case, by convention, the absolute value on K is defined as |x| = q− val(x) (so we choose
a = q), and there exists a unique Haar measure µ on K such that µ(O) = 1.

2.2.2 Lattices

Let d ≥ 1 an integer. We call a lattice in Kd any O-submodule Λ :=
⊕d

i=1Oai generated
by a basis (a1, . . . , ad) of Kd. The basis (a1, . . . , ad) that generates Λ is not unique. We
can write Λ = AOd where A is the matrix with columns a1, . . . , ad, which is then called
a representative of Λ. The elements U of the group GL(d,K) that leave Od invariant (i.e
UOd = Od) are exactly the matrices U ∈ GL(d,O) with entries in O whose inverse has all
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entries in O. The group GL(d,O) then plays the role of the orthogonal group O(d,R) [69,
Theorem 2.4]. Then, like positive definite matrices, lattices are in one-to-one correspondence
with left cosets GL(d,K)/GL(d,O), in particular, any two representatives of a lattice Λ are
elements of the same left coset. A lattice Λ is called diagonal1 if it admits a diagonal matrix
as a representative. Let us now state a result on lattices over valued fields that will be useful
in our discussion.

Lemma 2.4. For any two lattices Λ,Λ′ there exists an element g ∈ GL(d,K) such that gΛ
and gΛ′ are both diagonal lattices. 2

Proof. It suffices to show this when Λ is the standard lattice Λ = Od. Let A ∈ GL(d,K)
be a representative of Λ′. Thanks to the nonarchimedean singular value decomposition (see
Proposition 1.24), there exists a diagonal matrix D ∈ GL(d,K) and U, V ∈ GL(d,O) such
that A = UDV . Hence we deduce that Λ′ = UDOd. Picking g = U−1 yields gΛ = U−1Od =
Od and gΛ′ = DOd.

2.2.2.1 Gaussian measures

Suppose that K is a local field and d is a positive integer. As discussed in Section 2.2,
one can define multivariate Gaussian measures on Kd using nonarchimedean orthogonality.
It turns out that these measures are precisely the uniform distributions on O-submodules of
Kd. The non-degenerate Gaussians on Kd are then parameterized by full rank submodules
of Kd i.e. lattices.

For a lattice Λ in Kd we denote by PΛ the Gaussian measure on Kd given by Λ, i.e.
the uniform probability measure on Λ. If fΛ denotes the density (with respect to the Haar
measure µ⊗d) of PΛ, then

fΛ(x) = 1Λ(x)/µ⊗d(Λ), x ∈ Kd,

where 1Λ is the set indicator function of Λ.
One can then think of lattices as analogs for the positive definite covariance matrices in

the real case since they parameterize non-degenerate multivariate Gaussian measures. In
the language of group theorists, one can think of the Bruhat-Tits building for the reduc-
tive group PGLd(K) [1] as the parameter space for non-degenerate Gaussians up to scalar
multiplication.

2.3 The entropy map of local field Gaussian

distributions

In this section we assume that K is a local field and we fix a positive integer d ≥ 1 and
a lattice Λ in Kd. We recall that there is a unique Haar measure µ⊗d on Kd which is the

1homothety classes of diagonal lattices form what is called an apartment in the theory of buildings.
2This is in fact a property of buildings: any two chambers belong to a common apartment. See [1].
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product measure induced by µ on K. Letting A be a representative of the lattice Λ, i.e.
Λ = AOd, we can define the entropy h(Λ) of the lattice Λ as

h(Λ) = val(det(A)).

This is a well defined quantity since any other representative of Λ is of the form AU where
U ∈ GL(d,O) and det(U) ∈ O× is a unit, so val(det(U)) = 0. This definition lines up with
the definition in the real case because val(x) = − logq(|x|) where | · | is the absolute value on
K, so we get

h(Λ) = val(det(A)) = − logq(| det(A)|).
The following proposition justifies the nomenclature “entropy” and relates the entropy

h(Λ) of a lattice Λ to its measure µ⊗d(Λ).

Proposition 2.5. We have µ⊗d(Λ) = q−h(Λ). Moreover, the quantity h(Λ) is the differential
entropy of the Gaussian measure PΛ, i.e,

h(Λ) =

∫
Kd

logq(fΛ(x))PΛ(dx).

Proof. Let A be a representative of Λ. Thanks to the nonarchimedean singluar value de-
composition (see [62, Theorem 3.1]), we can write A = UDV , where U, V ∈ GL(d,O) are
two orthogonal matrices and D is a diagonal matrix. Then we have Λ = UDOd. Since
orthogonal linear transformations in Kd preserve the measure, we have µ⊗d(Λ) = µ⊗(DOd).
Let α1, . . . , αd be the diagonal entries of D. Then we have µ⊗d(Λ) = µ⊗d(

⊕d
i=1 αiO) =

q− val(α1)−···−val(αd). But val(α1) + · · ·+ val(αd) = val(det(A)) = h(Λ). The second statement
follows from the immediate computation:∫

Kd

logq(fΛ(x))PΛ(dx) =

∫
Kd

logq(fΛ(x))fΛ(x)µ⊗d(dx) = h(Λ).

For a subset I of [d] := {1, 2, . . . , d} we denote by ΛI the image of Λ under the projection
onto the space K |I| of coordinates indexed by I. This is also a lattice in the space K |I|. So,
for any subset I ⊂ [d], we can define the entropy hI(Λ) of the lattice ΛI . We can then define
the entropy map

H : GL(d,K)/GL(O) −→ R2d , Λ 7→ (hI(Λ))I⊂[d], (2.5)

where h∅(Σ) = 0 by convention. If A is a representative of Λ with columns a1, . . . , ad, then
the lattice ΛI is the lattice generated over O by the vectors ai,I which are the sub-vectors of
the ai’s with coordinates indexed by I. So we can compute hI(Λ) from the matrix A by

hI(Λ) = min
J⊂[d],|J |=|I|

val(det(AI×J)), (2.6)

where AI×J is the matrix extracted from A by taking the rows indexed by I and the columns
indexed by J , i.e. AI×J = (Ai,j)i∈I,j∈J .
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Now let X be a Kd-valued random variable with Gaussian distribution PΛ given by Λ.
So for any measurable set B in the Borel σ-algebra of Kd,

PΛ(X ∈ B) =
µ⊗d(Λ ∩B)

µ⊗d(Λ)
,

and V := val(X) its image under coordinate-wise valuation. Notice that, since PΛ(Xi = 0) =
0 for any i ∈ {1, . . . , d}, the vector V is almost surely in Zd . By definition, the distribution
of V is the push-forward of the distribution of X by the map val. We are interested in the
distribution of the valuation vector V and to determine it we compute its tail distribution
function QΛ which is defined on Rd as

QΛ(v) := PΛ(V ≥ v) for any v ∈ Rd,

where ≥ is the coordinate-wise partial order on Rd. Since V takes values in Zd, this function
is completely determined by its values for v ∈ Zd. For a vector v = (v1, . . . , vd) ∈ Zd let us
denote by ϖv the O-module generated by the basis ϖviei where e1, . . . , ed is the standard
basis of Kd i.e.

ϖv = ϖv1Oe1 ⊕ · · · ⊕ϖvdOed.

Definition 2.6. We define the logarithmic tail distribution function φΛ as

φΛ : Zd → Z, v 7→ − logq(QΛ(v)).

The following lemma relates the tail distribution function φΛ with the entropy h(Λ) of
the lattice Λ.

Lemma 2.7. We have φΛ(v) = h(Λ ∩ϖv) − h(Λ). Moreover, if [Λ : Λ ∩ϖv] denotes the
index of Λ ∩ϖv as a subgroup of Λ then we also have

QΛ(v) = 1/[Λ : Λ ∩ϖv].

Proof. By definition we have QΛ(v) = PΛ(X ∈ ϖv) = µ⊗d(ϖv ∩ Λ)/µ⊗d(Λ). So by virtue
of Proposition 2.5 we deduce that QΛ(v) = qh(Λ)−h(Λ∩ϖ

v). The first statement then follows
from the definition of φΛ (Definition 2.6). For the second statement, by definition, Λ can be
partitioned into [Λ : Λ ∩ϖv] cosets of Λ ∩ϖv. Since the Haar measure µ⊗d is translation
invariant all of these cosets have the same measure i.e. µ⊗d(Λ) = [Λ : Λ ∩ϖv]µ⊗d(Λ ∩ϖv).
The result then follows from the fact that QΛ(v) = µ⊗d(ϖv ∩Λ)/µ⊗d(Λ) and Definition 2.6.

Next, we introduce a technical tool that we will be using in the proof of our first result.

Definition 2.8. For any ℓ ∈ {0, . . . , d} we define the ℓ-distance ϕℓ(Λ,Λ
′) of two lattices Λ,Λ′

as the minimum of val(det(x1, . . . , xℓ, y1, . . . , yk)) among all possible choices of x1, . . . , xℓ ∈ Λ
and y1, . . . , yk ∈ Λ′ where k = d− ℓ.
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Since for any g ∈ GL(d,K) , x1, . . . xℓ ∈ Λ and y1, . . . , yk ∈ Λ′ we have

val(det(gx1, . . . gxℓ, gy1, . . . , gyk)) = val(det(x1, . . . , xℓ, y1, . . . , yk)) + val(det(g)),

we can see that
ϕℓ(g.Λ, g.Λ

′) = ϕℓ(Λ,Λ
′) + val(det(g)).

We then deduce that the quantity ϕℓ(Λ,Λ
′)− h(Λ′) is invariant under the action GL(d,K);

that is for any g ∈ GL(d,K) we have

ϕℓ(g.Λ, g.Λ
′)− h(g.Λ′) = ϕℓ(Λ,Λ

′)− h(Λ′).

When the second lattice Λ′ = ϖv is diagonal and Λ has representative A ∈ GL(d,K),
the optimal choice for the vectors x1, . . . , xℓ and y1, . . . , yk is when the vectors x1, . . . , xℓ are
among the columns a1, . . . , ad of A and the vectors y1, . . . , yk are among the vectors ϖviei
where (ei)1≤i≤d is the standard basis of Kd. So we deduce that ϕℓ(Λ,ϖ

v) can be computed
as follows:

ϕℓ(Λ,ϖ
v) = min

I,J⊂[d]
|I|=|J |=ℓ

(
val(det(AI×J)) +

∑
j ̸∈J

vj

)
.

So we also get

ϕℓ(Λ,ϖ
v)− h(ϖv) = min

I,J⊂[d]
|I|=|J |=ℓ

(
val(det(AI×J))−

∑
j∈J

vj

)
. (2.7)

In the special case Λ = ϖa, for a ∈ Zd, the determinant of AI×J in the above optimization
problem is 0 whenever J ̸= I, since we can choose A to be diagonal. So we get

ϕℓ(ϖ
a,ϖv)− h(ϖv) = min

I⊂[d],|I|=ℓ

(∑
i∈I

ai −
∑
i∈I

vi

)
.

Theorem 2.9. The logarithmic tail distribution function φΛ is the tropical polynomial on
Zd given by

φΛ(v) = max
I⊂[d]

(vI − hI(Λ)). (2.8)

Proof. First we show this for a diagonal lattice Λ = ϖa where a ∈ Zd. For any v ∈ Zd,
let a ∨ v the vector with coordinates max(ai, vi). We have ϖa ∩ϖv = ϖa∨v so we get the
entropy h(ϖa) =

∑d
i=1 ai and h(ϖa ∩ϖv) = h(ϖa∨v) =

∑d
i=1 max(ai, vi). Hence we have

φΛ(v) = h(ϖa ∩ϖv)− h(ϖa) = max
I⊂[d]

(∑
i∈I

vi +
∑
i ̸∈I

ai

)
−

d∑
i=1

ai = max
I⊂[d]

(vI − aI),
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and hI(ϖ
a) = aI . So the theorem holds for diagonal lattices. To see why it also holds for a

general lattice Λ, first notice that in the diagonal case Λ = ϖa we have

φΛ(v) = − min
ℓ=0,...,d

(ϕℓ(Λ,ϖ
v)− h(ϖv)) .

Secondly, notice that the right hand side of the previous equation is invariant under the
action of GL(d,K). So for g ∈ GL(d,K),

min
ℓ=0,...,d

(ϕℓ(g.Λ, g.ϖ
v)− h(g.ϖv)) = min

ℓ=0,...,d
(ϕℓ(Λ,ϖ

v)− h(ϖv)) .

By Lemma 2.7, we have φΛ(v) = logq([Λ : Λ ∩ϖv]) = logq([g.Λ : g.Λ ∩ g.ϖv]). Now fix a
general lattice Λ and v ∈ Zd. Also, by Lemma 2.4, there exists g ∈ GL(d,K) such that gΛ
and gϖv are both diagonal, so

φΛ(v) = logq([g.Λ : g.Λ ∩ g.ϖv]) = − min
ℓ=0,...,d

(ϕℓ(g.Λ, g.ϖ
v)− h(g.ϖv))

= − min
ℓ=0,...,d

(ϕℓ(Λ,ϖ
v)− h(ϖv)) .

Hence, we deduce, thanks to equation (2.7), that

φΛ(v) = − min
ℓ=0,...,d

 min
I,J⊂[d]
|I|=|J |=ℓ

(
val(det(AI×J))−

∑
j∈J

vj

) .

We can simplify this thanks to equation (2.6) to get the desired equation (2.8).

So the distribution of the random vector of valuations V is given by a tropical polynomial
φΛ via its tail distribution function QΛ. The coefficients of this polynomial are exactly
the entropies hI(Λ). Now we prove a couple of interesting properties of φΛ, namely how
the coefficients hI(Λ) behave under diagonal scaling and permutation of coordinates of the
random vector X. To this end, let us denote by Da = diag(a1, . . . , an) the diagonal matrix
with coefficients ai ∈ K and P σ the permutation matrix corresponding to a permutation σ
of [d] i.e P σ

i,j = 1 when j = σ(i) and 0 otherwise.

Lemma 2.10. Let Λ be a lattice in Kd, a ∈ Kd and σ a permutation of [d]. We have

hI(DaΛ) = hI(Λ) +
∑
i∈I

val(ai) and hI(P
σΛ) = hσ(I)(Λ).

Proof. For I ⊂ [d], we have hI(DaΛ) = min
|J |=|I|

val(det((DaA)I×J)), where A is any represen-

tative of Λ. Since all the rows of DaA are multiples of those of A by the scalars ai we deduce
that det((DaA)I×J) = det(AI×J)

∏
i∈I ai and hence we get

hI(DaΛ) = hI(Λ) +
∑
i∈I

val(ai).

Similarly we can see the effect the permutation of coordinates of X has on the vector of
entropies H(Λ) = (hI(Λ))I⊂[d].
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2.3.1 Supermodularity of the entropy map

As it is the case for real Gaussians, we would like the vector of entropies H(Λ) := (hI(Λ))
to have values in the supermodular cone Sd. As a first step towards proving this result, notice
that the previous lemma implies that, if Λ is a lattice such that H(Λ) ∈ Sd, then for any
diagonal matrix Da we still have H(DaΛ) ∈ Sd. Also for any permutation σ of {1, . . . , d},
we still have H(P σΛ) ∈ Sd.

In this subsection, we assume that K is a local field and fix a uniformizer ϖ of K and a
set T ⊂ O of representative of the residue field k (as in Proposition 1.15).

Definition 2.11. We say that a matrix A = (aij)1≤i,j≤d ∈ GL(d,K) is in Hermite normal
form if it satisfies the following conditions:

1. aij = 0 for all 1 ≤ i < j ≤ d; that is A is lower triangular.

2. aii = ϖni with ni ∈ Z for all 1 ≤ i ≤ d.

3. aij is either 0 or is Laurent polynomial in ϖ with coefficients in T of degree strictly
less than ni for any 1 ≤ j < i ≤ d.

Lemma 2.12. For any matrix A ∈ GL(d,K) there exists a unique matrix H in Hermite
normal form and a unique matrix U ∈ GL(d,O) such that

A = HU.

In particular, any lattice L = AOd ⊂ Kd has a unique representative H ∈ GL(d,K) in
Hermite normal form.

We can now state the second result of this section concerning the supermodularity of the
entropy map. However, we first need to give an equivalent definition of the supermodular
cone as

Sd =
{

(xI)I⊂[d] ∈ R2d : x∅ = 0 and xIi + xIj ≤ xI + xIij, for any I ⊂ [d], i ̸= j ∈ [d] \ I
}

where we write Ii instead of I ∪ {i}. These are the facet-defining inequalities of the cone Sd
and there are d(d− 1)2d−3 of them; see [104].

Theorem 2.13. The image of the map H : Λ→ (hI(Λ))I⊂[d] lies in the supermodular cone
Sd, i.e, for any subset I ⊂ [d] with |I| ≤ d− 2 and i ̸= j ∈ [d] \ I,

hIi(Λ) + hIj(Λ) ≤ hI(Λ) + hIij(Λ).

Proof. We prove this by induction on d. The result is trivial for d = 1, 2. Assume that it
holds for lattices in Kr for any r ≤ d, where d ≥ 3. Let Λ be a lattice in Kd and A its Hermite
normal form. For any I ⊂ [d] of size |I| < d−2 the inequality hIi(Λ)+hIj(Λ) ≤ hI(Λ)+hIij(Λ)
holds for any i ̸= j not in I, thanks to the induction hypothesis. This is because, when
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|I| ≤ d − 2, we are working on the lattice ΛIij which is a lattice in dimension less than d.
Then, it suffices to show the inequality when I has size d−2. By Lemma 2.10 we can assume
that I = {1, . . . , d− 2} and i = d− 1 and j = d (if not, we can just act on Λ by a suitable
permutation matrix). Let us write down the matrix A as follows

A =



ϖa1 0 . . . 0 0 0

∗ ϖa2 . . .
...

...
...

...
. . . . . . 0 0 0

∗ . . . ∗ ϖad−2 0 0
∗ . . . ∗ ∗ ϖad−1 0
∗ . . . ∗ ∗ x ϖad


.

Recall that since A is the Hermite form of Λ we have val(x) < ad or x = 0. Now we have

hIi(Λ) = a1 + · · ·+ ad−1, hIj(Λ) = a1 + · · ·+ ad−2 + min(val(x), ad)

hI(Λ) = a1 + · · ·+ ad−2, and hIij(Λ) = a1 + · · ·+ ad.

The inequality hIi(Λ) +hIj(Λ) ≤ hI(Λ) +hIij(Λ) then holds simply because val(x) ≤ ad and
this finishes the proof.

This theorem underlines another similarity between the local field Gaussians defined in
[65] and classical multivariate Gaussian measures. From Lemma 2.10 we can see that acting
on Λ by a diagonal matrix just moves the point H(Λ) ∈ Sd in parallel to the lineality space
of the cone Sd, that is, the biggest vector space contained in Sd.

The classical entropy map is tightly related to conditional independence. More precisely,
if Σ ∈ PDd and X is a Gaussian vector with covariance matrix Σ, then for any I ⊂ [d] and
i ̸= j not in I the variables Xi and Xj are independent given the vector XI if and only if
hIi(Σ) + hIj(Σ) = hI(Σ) + hIij(Σ) and we write

Xi ⊥⊥ Xj|XI ⇐⇒ hIi(Σ) + hIj(Σ) = hI(Σ) + hIij(Σ).

This means that the conditional independence models are exactly the inverse images by
H of the faces of Sd [155, Proposition 4.1]. It turns out that, in the local field setting,
the non-archimedian entropy map H defined in (2.3) also encodes conditional independence
information on the coordinates of the random Gaussian vector X as stated in the following
proposition.

Proposition 2.14. Assume d ≥ 2, let I be a subset of [d] and let i ̸= j ∈ [d] \ I two
distinct integers. Let Λ be a lattice in Kd and X a random Gaussian vector with distribution
given by Λ. Then the conditional independence statement Xi ⊥⊥ Xj|XI holds if and only if
hIi(Λ) + hIj(Λ) = hI(Λ) + hIij(Λ).

Proof. Using Lemma 2.10 we reduce to the case I = [r] where r ≤ d − 2 , i = r + 1 and
j = i + 1. Let A = (ai,j) be the unique representative in Hermite form of Λ. We claim
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that Xi ⊥⊥ Xj|XI if and only if aj,i = 0. To see why, let Z = A−1X which is a Gaussian
vector whose distribution is the uniform on Od. We have Xi = ai,1Z1 + · · · + ai,iZi and
Xj = aj,1Z1 + · · ·+ aj,jZj. Since ZI = A−1I,IXI , given XI we know ZI and vice-versa. Hence
Xi ⊥⊥ Xj|XI holds if and only if (aj,iZi+aj,jZj) ⊥⊥ Zi. This happens if and only if the vectors
(1, 0) and (aj,i, aj,j) in K2 are orthogonal; see [65]. This is equivalent to val(aj,j) ≤ val(aj,i)
which means that aj,i = 0 since A is in Hermite form. On the other hand, since A is lower
triangular, we have

hI(Λ) = val(det(AI×I)) , hIi(Λ) = hI(Λ) + val(ai,i)

hIj(Λ) = hI(Λ) + min(val(aj,i), val(aj,j)) and hIij(Λ) = hI(Λ) + val(ai,i) + val(aj,j).

So the equality hIi(Λ) + hIj(Λ) = hI(Λ) + hIij(Λ) holds if and only if val(aj,j) ≤ val(aj,i)
since A is the Hermite form of Λ this happens if and only if aj,i = 0. In combination with
the calculation above, this finishes the proof.

In other terms, the conditional independence statement Xi ⊥⊥ Xj|XI holds if and only
if the entropy vector H(Λ) = (hI(Λ)) is on the face of the polyhedral cone Sd cut by the
equation hIi(Λ) + hIj(Λ) = hI(Λ) + hIij(Λ). This gives an analog of [155, Proposition 4.1].

Corollary 2.15. The Gaussian conditional independence models are exactly those subsets
of lattices that arise as inverse images of the faces of Sd under the map H.

Proof. This follows immediately from the previous proposition.

This underlines the importance of the map H, and also gives reason to think that the
suitable analog of the positive definite cone on local fields is the set of lattices or more
precisely the Bruhat-Tits building [1, 54]. A hard question in information theory for classical
multivariate Gaussians is to describe the image of the entropy map [155]. This problem turns
out to be difficult in our non-archimedean setting as well.

Problem 2.3.2. Characterize the image of the entropy map H and describe how it intersects
the faces of the supermodular cone Sd. What can you say about the fibers of this map?

Remark 2.16. We recall that for any d ≥ 1 the image im(H) is invariant under the action
of the symmetric group and by translation in parallel to the lineality space of Sd. This is
thanks to Lemma 2.10. We will provide an answer for Problem 2.3.2 when d = 2, 3 at the
end of Section 2.4.

We now provide an algorithm to compute the entropy vector H(Λ), i.e, the coefficients of
the polynomial φΛ. This relies on computing the Hermite form rather than directly solving
the optimization problems given by equation (2.6).
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Algorithm 1: Computing H(Λ)

Input: A full rank matrix A = (a1, . . . , an) ∈ Kd×n with n ≥ d generating Λ
Output: The entropy vector H(Λ)
for I ⊂ [d] do

Compute the Hermite form AI of ΛI .
hI(Λ)← val(det(AI)) (sum of valuations of diagonal elements of AI)

end
H(Λ)← (hI(Λ))I⊂[d]
return H(Λ).

Let us now discuss a couple of low-dimensional examples when K = Qp.

Example 2.17. Let Λ be the lattice represented by A =

(
1 0
p p2

)
. The coefficients hI(Λ)

of the polynomial φΛ can be computed from the representative A using Line 1 and we have

h∅(Λ) = 0, h1(Λ) = 0, h2(Λ) = 1, h1,2(Λ) = 2

and then we get
φΛ(v1, v2) = max(0, v1, v2 − 1, v1 + v2 − 2).

The independence statement X1 ⊥⊥ X2 does not hold since the inequality h1(Λ) + h2(Λ) ≤
h12(Λ) is strict. The tropical curve of φΛ and its regular triangulation of the square are
shown in Example 2.17.

(0, 1)

(1, 2)

(0, 0)

(0, 1)

(1, 0)

(1, 1)

Figure 2.1: Tropical curve of φΛ and its regular triangulation of the square for Example 2.17

Example 2.18. Let Λ be the lattice represented by A =

1 0 0
1 ϖ2 0
1 ϖ ϖ2

. The polynomial
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φΛ can be computed again using Algorithm 1 and we get

h∅(Λ) = 0

h1(Λ) = 0, h2(Λ) = 0, h3(Λ) = 0

h1,2(Λ) = 2, h1,3(Λ) = 1, h2,3(Λ) = 1

h1,2,3(Λ) = 4.

So we deduce that

φΛ(v) = max(0, v1, v2, v3, v1 + v2 − 2, v1 + v3 − 1, v2 + v3 − 1, v1 + v2 + v3 − 4).

We can easily check that the supermodularity inequalities are satisfied. Also, none of the
conditional independence statements Xi ⊥⊥ Xj|Xk are satisfied for {i, j, k} = {1, 2, 3} since
the point H(Λ) is in the interior of the cone S3, i.e, all the inequalities

hki(Λ) + hkj(Λ) ≤ hi(Λ) + hijk(Λ)

are strict. Figure 2.2 shows the tropical geometry for the lattice Λ.

(a) Tropical variety of φΛ.
(b) Regular subdivision of the Newton
polytope of φΛ.

Figure 2.2: Tropical geometry of the lattice Λ for Example 2.18.

Remark 2.19. For any lattice Λ, there exists a maximal (for inclusion) diagonal lattice inside
Λ and a minimal diagonal lattice containing Λ. Let us denote these two lattices by ϖa and
ϖb respectively, where a ≥ b ∈ Zd. So, we have the inclusions ϖa ⊂ Λ ⊂ ϖb. It is not
difficult to see that the region of linearity corresponding to the monomial v1 + · · ·+vd−h(Λ)
in the tropical polynomial φΛ(v) is the orthant R≥a := {x ∈ Rd, x ≥ a}. Similarly, the region
of linearity corresponding to the monomial 0 is the orthant R≤b := {x ∈ Rd, x ≤ b}. From
this, we can the deduce the recursive relation

h[d](Λ) = h[d−1](Λ) + ad.

This iterative way of computing the entropy map H(Λ) is slightly more efficient than Line 1
where we have to compute the whole Hermite form of ΛI for every I ⊂ [d]. We provide an
implementation of Algorithm 1 in the repository (2.4).
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2.4 The entropy map on nonarchimedean fields

In this section we generalize some of the results in Section 2.3 to the case where K is
a field with a nonarchimedean valuation. When the residue field k of K is infinite or the
valuation group Γ is dense in R, the probabilistic framework we had in Section 2.3 is no
longer valid. More precisely, we lose the local compactness and we no longer necessarily
have a Haar measure on K.

We define the entropy H(Λ) = (hI(Λ))I⊂[d] of a lattice as in Section 2.3, i.e for any subset
I ⊂ [d],

hI(Λ) := min
|J |=|I|

val(det(AI×J)),

where A is a representative of Λ. We can still define a Hermite representative of Λ.
The argument used in Theorem 2.13 can be used again to show that the image of H still

lies in the supermodular cone Sd. In this setting however, since the valuation group can be
dense in R, the image is not necessarily in Sd ∩ Z2d−1. As in Section 2.3, the map H fails
to be surjective when d ≥ 3. The algorithm we provide in (2.4) computes the map H when
K = Q{{t}} is the field of Puiseux series over Q.

Now we show that the only distribution on the field Laurent series K = R((t)) that
satisfies the definition suggested in [65, Definition 4.1] is the Dirac measure at 0. Let P be
such a probability measure. First, we recall that if X is a random variable with distribution
P, then for any a ∈ O×K the random variables X and aX have the same distribution, and we

write X
d
= aX. In particular, for any a ∈ R× we have X

d
= aX.

Proposition 2.20. The probability distribution P is the Dirac measure at 0.

Proof. We can write the power series expansion of X as X = X0t
V + X1t

V+1 + . . . , where
V ∈ Z is the random valuation of X. Hence for a ∈ R× we have aX = aX0t

V +aX1t
V+1+. . . ,

and we deduce that Xk
d
= aXk for any k ≥ 0 and a ∈ R×. We then deduce that Xk = 0

almost surely for all k ≥ 0. Hence X = 0 almost surely which finishes the proof.

Using a variant of this argument, it is not difficult to see that a similar problem would arise
when we try to define Gaussian measures by orthogonality for all fields listed in Example 2.3.
It is not immediately clear how to fix this problem and find a suitable definition for Gaussian
measures on nonarchimedean valued fields.

Problem 2.4.1. Is there a suitable definition for Gaussian measures on the fields listed
Example 2.3?

Remark 2.21. We can define a probability measure on Rd induced by Λ via its tail
distribution QΛ as in Section 2.3. One can see that the support of this distribution is
trop(Λ) := val(Λ ∩ (K×)d); the image under valuation of points in Λ with no zero coordi-
nates. This is in general a polyhedral complex in Rd where each edge is parallel to some
eI :=

∑
i∈I ei. The following figure is a drawing of trop(Λ) for a lattice in K3 when K = K

(the field of generalized Puiseux series).
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Figure 2.3 is a depiction of trop(Λ) for the lattice Λ in Example 2.18. In this case, trop(Λ)
is a polyhedral complex is composed of a bounded line segment attached to three unbounded
2-dimensional polyhedra. These polyhedra are in turn attached to an orthant of dimension
3.

Figure 2.3: The polyhedral complex trop(Λ) for Λ in Example 2.18.

To conclude this section we give a partial answer for Problem 2.3.2 when d = 2, 3 and
the valuation group is R.

Proposition 2.22. For d = 2, the image im(H) of the entropy map H is exactly S2.

Proof. For Λ with representative

(
ta 0
tb tb+δ

)
with a, b ∈ R and δ ≥ 0 we have H(Λ) =

(a, b, a+ b+ δ). So H is indeed surjective onto S2.

For d = 3, the cone S3 ⊂ R7 has a lineality space L3 of dimension 3. Since both S3 and
im(H) are stable under translations in L3 (see Remark 2.16 and Lemma 2.10 on diagonal
scaling of lattices), they are fully determined by their projection onto a complement of L3.
Let us we write vectors x of R7 in the form

x = (x1, x2, x3; x12, x13, x23; x123),

and let us project S3 and im(H) on the linear space W ⊂ R7 of vectors of the form

x = (0, x2, x3; 0, x13, x23; 0).

which is a complement of L3 in R7. We write a vector of W as (x2, x3;x13, x23) or simply
as (w, x, y, z) to simplify notation. Let us denote by P , C the projections of im(H) and S3
respectively onto the space W . From Section 2.3.1, we clearly have P ⊂ C.

The projection C of S3 onto W is a polyhedral cone that does not contains any lines. In
the language of polyhedral geometry, this is called a pointed cone. Moreover, the dimension
of this projection is 4. It is defined in W by the inequalities
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w ≤ 0, x ≤ y,

w + x ≤ z, y ≤ 0,

z ≤ w, y + z ≤ x.

(2.9)

This defines C as a pointed cone over a bipyramid (see Figure 2.4).
On the other hand, any lattice Λ in K3 can be represented, up to diagonal scaling, by a

representative with Hermite form of the shape1 0 0
∗ 1 0
∗ ∗ 1

 .

The entropy vector of a lattice Λ with such a Hermite normal form is of the shape

H(Λ) = (0, h2, h3; 0, h13, h23; 0).

This corresponds to the projection of im(H) to W parallel to L3. So the projection P of
im(H) onto W is the set

P =

H(Λ), Λ given by a matrix of the shape

1 0 0
∗ 1 0
∗ ∗ 1

 in K3×3

 .

For a lattice Λ with representative A =

1 0 0
a 1 0
b c 1

, such that a, b, c ∈ K with negative or

zero valuation (see Definition 2.11), the point H(Λ) in W is given by
w = h2(Λ) = val(a),

x = h3(Λ) = min(val(b), val(c)),

y = h13(Λ) = val(c),

z = h23(Λ) = min(val(ac− b), val(a)).

One can check that, for any choice of a, b, c ∈ K with negative or zero valuation, the above
coordinates satisfy the inequalities in (2.9). With the constraints on the valuations of a, b, c,
and from this parametric representation of P , we can see that points of P have to satisfy
the inequalities 

w ≤ 0,

x ≤ y,

y ≤ 0.

The only part that remains to determine is the inequalities involving the last variable z.
The ambiguity comes from the fact that cancellations can happen in ac − b which might
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affect val(ac − b) and hence also z. But, separating the cases where val(ac) = val(b) and
val(ac) ̸= val(b), we get the following three sets of inequalities that describe P as a polyhedral
complex: 

w ≤ 0,

x ≤ w + y,

y ≤ 0,

z = x,

,



w ≤ 0,

x ≤ y,

y ≤ 0,

y + w ≤ x,

z = y + w,

and



w ≤ 0,

y ≤ 0,

x = y + w,

z ≤ w,

x ≤ z.

We can then see that P is a polyhedral fan of dimension 3 inside C. More precisely, P is the
union of three pointed polyhedral cones of dimension 3 inside C which is a cone of dimension
4. Figure 2.4 depicts the intersections of P and C with the hyperplane w+ x+ y+ z+ 1 = 0
(slicing the pointed cones with a hyperplane).

(a) P ∩ {w + x+ y + z + 1 = 0}.
(b) C∩{w+x+y+z+1 = 0}. Red facet:
1 ⊥⊥ 2; Blue facet: 1 ⊥⊥ 3, Green facet:
2 ⊥⊥ 3; Orange facet: 1 ⊥⊥ 2|3; Yellow
facet: 1 ⊥⊥ 3|2; Grey facet: 2 ⊥⊥ 3|1.

Figure 2.4: Intersections of P and C with the affine hyperplane x+ y + z + w + 1 = 0.

Corollary 2.23. The entropy map H : GL(d,K)/GL(d,OK) → Sd is not surjective when
d ≥ 3.

We expect this result to hold in every dimension; that is the image im(H) is a polyhedral

fan whose facets are polyhedral cones of dimension d(d+1)
2

inside Sd which is of dimension
2d − 1.

2.5 Statistical models in the Bruhat-Tits building

Since the Bruhat-Tits building is the parameter space of non-degenerate Gaussian dis-
tribution on Kd, Gaussian statistical models are subsets of this building. Describing what
certain models look like in this setting turns out to be a hard task that requires more ad-
vanced techniques. In this section we give a couple of examples of such models.
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In statistics, given a data set of points, one usually tries to the best probability distri-
bution (in a certain model) that fits the data. This fitting is often done by maximizing the
likelihood function on a certain model of distributions. The following theorem addresses the
case where we fit a Gaussian distribution to a collection of data points; that is our model is
the entire set of lattices.

Theorem 2.24. Let X = {x1, . . . , xN} be a dataset of points in Kd of full rank. Then there
is a unique non-degenerate Gaussian distribution P on Kd that maximizes the likelihood

L(X , L) =
∏
x∈X

1[x ∈ L]

µ⊗d(L)
,

Namely this distribution is the Gaussian distribution corresponding to the lattice

LX = spanO(X ).

Proof. Define the O-module LX := spanO(X ). Since X is of full rank, LX is a lattice in Kd.
Now let L be any other lattice that contains X . Then L(X , L) = µ⊗d(L)−1 and L(X , LX ) =
µ⊗d(LX )−1. Since LX ⊂ L we have µ⊗d(L) ≥ µ⊗d(LX ). Thus L(X , L) ≤ L(X , LX ). The
lattice LX maximizes the likelihood. Suppose that LX ⊊ L by means of a basis change
without loss of generality we can suppose that L = Od. There exists an orthogonal matrix
U and a diagonal matrix D := diag(ϖn1 , . . . , ϖnd) such that LX = UDOd. Since LX ⊊ L we
have ni ≥ 0 for any 1 ≤ i ≤ d and there exists k such that nk > 0. Thus µ⊗d(LX ) < µ⊗d(L).
Then LX is the unique lattice that maximizes the likelihood.

Remark 2.25. In the case where X spans a proper subspace WX := spanK(X ) of Kd we
can define a Haar measure λ on WX and the likelihood function defined for every full rank
lattice of WX as L(X , L) =

∏
x∈X

1xi∈L/µ
⊗d(L). The maximum likelihood estimate in this case

is again LX := spanOK
(X ), and it is the minimal lattice with respect to inclusion amongst

those that maximize the likelihood.

2.5.1 Conditional independence models

Theorem 2.26. Let K be a local field and q the cardinality of its residue field k ∼= Fq. Let
X := (X1, . . . , Xd)

T be a Gaussian vector in Kd and I a proper subset of [d]. The maximal
subsets J := {j1, . . . , jr} of {1, . . . , d} \ I such that Xj1 , . . . Xjr are mutually independent
given XI are the bases of an Fq-realizable matroid with base set {1, . . . , d} \ I where q is the
size of the residue field k.

Proof of Theorem 2.26. Without loss of generality we can suppose that I = {1, . . . , ℓ} for
some ℓ < d. By Lemma 2.12, there exists a matrix A in Hermite normal form such that the
support of X is the lattice L = A.Od

K . Then there exist a standard Gaussian vector Y such
that X = AY . Let B = (Aij)ℓ+1≤i,j≤d be the lower-right (d − ℓ) × (d − ℓ) block of A, and
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{fi : ℓ+ 1 ≤ i ≤ d} the linear forms defined by the rows of B. For a subset J := {j1, . . . , jr}
of 1, . . . , d \ I, by Lemma 1.30, we have that Xj1 , . . . , Xjr are mutually independent given
XI if and only if {fji : 1 ≤ i ≤ r} are orthogonal. Let us define the matrix C as the
matrix obtained from B ∈ GL(d− ℓ,K) by scaling its rows so that they have norm 1. Then
from Proposition 1.20 we deduce that Xj1 , . . . , Xjr are independent given XI if and only if
the images (modulo ϖ) of the rows of C indexed by J are linearly independent in kd−ℓ. So
conditional independence given XI is encoded in an k-realizable matroid given by the images
modulo ϖ of the rows of C.

Example 2.27. Let p be a prime number and consider the Gaussian vector X = (Xi)1≤i≤4
in Q4

p with distribution given by the following lattice

L =


1 0 0 0
1 1 0 0
1 0 p 0
1 p−1 p−1 p2

Z4
p.

If I = {1} then the matrices B and C from the proof of Theorem 2.26 in this case are

B =

 1 0 0
0 p 0
p−1 p−1 p2

 ∈ Z3×3
p and C =

1 0 0
0 1 0
1 1 0

 ∈ F3×3
p .

Then from the matrix C we deduce the following conditional independence statements

X2 |= X4|X1, X3 |= X4|X1 and X3 |= X4|X1,

However the three variables X2, X3 and X4 are not mutually independent conditioned X1.
Independence conditioned on X1 is encoded in the matroid that arises from the rows of C.

Let I = {1, . . . , r} and J = {r + 1, . . . , r + s} where r, s ≥ 0 are integers with r + s ≤ d.
We denote byMI,J the model of non-degenerate Gaussian distributions on Qd

p such that the
variables indexed by J are all independent given those indexed by I i.e. the set of rank d
lattices L in Kd such that if X is a Gaussian on with lattice L we get

Xr+1 |= . . . |= Xr+s | X1, . . . , Xr. (2.10)

Using Lemma 2.12 and Theorem 1.30 we can see that the points (or distributions) in MI,J
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are exactly those lattices L whose Hermite normal form has the following shape

∗ 0 . . . . . . . . . . . . . . . . . . . . . 0
...

. . . . . .
...

∗ . . . ∗ . . .
...

∗ . . . ∗ ∗ . . .
...

∗ . . . ∗ 0 ∗ . . .
...

...
...

...
. . . . . . . . .

...
...

... 0 . . . 0 ∗ . . .
...

∗ . . . ∗ ∗ . . . ∗ ∗ . . . . . .
...

...
...

...
...

...
. . . . . . 0

∗ . . . ∗ ∗ . . . ∗ ∗ . . . ∗ ∗



,

where the red block is the below diagonal part of the block indexed by J × J . The situation
is similar to Gaussians on the real numbers where conditional independence implies that
certain entries of the concentration matrix have to be zero.

The reader might be wary of the particular choice of I and J , but by permuting the
variables X1, . . . , Xd we may always assume that I, J have the prescribed shapes. Also, since
the conditional independence statement (2.10) does not change when scaling the lattice L it
is natural to want to describe the model MI,J in the Bruhat-Tits building.

Problem 2.28. What does the model MI,J look like in the Bruhat-Tits building? What
happens when we have multiple conditional independence statements? In the spirit of The-
orem 2.24, can we easily fit conditional independence models to a collection of data points?

2.5.2 Exchangeable Gaussian vectors

Let d ≥ 1 be an integer. We say that a probability distribution in Rn is exchangeable if
it is invariant under the action of the symmetric group Sd on Rn. The centered Gaussian
distributions in Rd which are exchangeable are exactly those distributions whose positive
semidefinite covariance matrix Σ = (Σij) satisfies

Σ11 = · · · = Σdd and Σij = Σ12 for any 1 ≤ i ̸= j ≤ d.

This gives a description of the set (or model) of exchangeable centered Gaussians in Rd as a
subset of the positive semi-definite cone. A similar question can be formulated in the local
field setting.

Question 2.29. When K is a non-archimedean local field, what are the exchangeable Gaus-
sian distributions on Kd? Equivalently what are the lattices in Kd that are invariant under
the action of Sd? What does this set of invariant lattices look like in the Bruhat-Tits Build-
ing?
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This question falls under the general problem of determining the set of fixed points under
the action of a (compact) group on the Bruhat-Tits building. We provide a partial answer
in the case d = 2.

Proposition 2.30. Let L be a lattice in K2. Then L is invariant under the action of the
symmetric group S2 if and only if its Hermite normal form has the form(

ϖa 0
0 ϖa

)
with a ∈ Z.

or (
ϖu 0
ϖuζ ϖv

)
with v > u ∈ Z and ζ ∈ O×K such that ζ2 = 1 (mod ϖv−uOK).

Proof. Suppose that a lattice L with Hermite normal form(
ϖa 0
x ϖb

)
is invariant under the action of the involution (1, 2). If x = 0 then it is clear that we must
have a = b. Now suppose that x ̸= 0, then we deduce that L is also represented by the
matrix (

x ϖb

ϖa 0

)
hence also by the matrix (

x 0
ϖa ϖb+a/x

)
.

Write x = ϖcζ with ζ ∈ O×K and c < b ∈ Z (by definition of Hermite normal form). Then L
is also represented by the matrix (

ϖc 0
ϖaζ−1 ϖb−c+a

)
.

Since the last matrix is also in Hermite normal form we deduce that

a = c and ζ−1 = ζ (mod ϖb−a)

Conversely, it is not hard to check that if L is a lattice with one of the suggested Hermite
normal forms then L is invariant under action of the transposition (1, 2) (which just swaps
the rows of the representative matrices).

Example 2.31. The following figure describes locally (i.e. we only drew a bounded region
in the infinite 3-valent tree that is the Bruhat-Tits building B2(Q2)) the set of S2-invariant
lattice classes in the building B2(Q2). This set consists of the lattice classes colored in blue
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and red. The points colored in blue form an apartment (we only drew a piece of it) in the
building B2(Q2) while the red points are the points that have distance 1 from this apartment.

(
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)(
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0 1

)

(
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1 2

)
(
1 0
3 4

)(
1 0
1 4

)

(
1 0
2 4

)

(
1 0
11 16

)

(
1 0
0 4

)

(
1 0
15 16

)
(
1 0
7 16

)

(
1 0
3 16

)

(
2 0
1 2

)
(

4 0
0 1

)

(
1 0
1 8

)
(
1 0
3 8

)

(
1 0
7 8

)(
1 0
5 8

)
(

1 0
13 16

)(
1 0
5 16

)

(
1 0
1 16

)

(
1 0
9 16

)

Figure 2.5: The set of S2-invariant lattices in the building B2(Q2) (colored in blue and red).

The following figure describes (locally) the set of S2-invariant lattice classes in the building
B2(Q3) (i.e. exchangeable non-degenerate Gaussian distributions in Q2

3). This set consists
of the lattice classes colored in blue.
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Figure 2.6: The set of S2-invariant lattices in the building B2(Q3) (colored in blue).
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2.6 Conclusion

In conclusion, there are many similarities between the classical theory of Gaussian distri-
butions on euclidean spaces and the theory of Gaussian measures on local fields as defined
by Evans in [65]. In this chapter we have exhibited another similarity in terms of differential
entropy, and studied a couple of Gaussian models in the Bruhat-Tits building. This gives
reason to think that the suitable non-archimediean analog of the positive definite cone is in-
deed the set of lattices, or more precisely, in the language of group theorists, the Bruhat-Tits
building for PGL. This analogy can still be carried out for non-archimedean valued fields in
general. However, when the field K has a dense valuation group or an infinite residue field,
we lose the probabilistic interpretation and thus also the notion of entropy.
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Chapter 3

Sampling from p-adic algebraic
manifolds

This chapter is based on joint work [50] with Enis Kaya.

3.1 Introduction

Algebraic varieties and manifolds are ubiquitous in many areas of mathematics: In num-
ber theory, Shimura varieties arise as complex algebraic varieties that parameterize certain
types of Hodge structures; Calabi-Yau manifolds model a number of phenomena in physics
generally and superstring theory specifically, and enjoy interesting geometric properties; and
many interesting probabilistic models arise as varieties whose algebraic and geometric prop-
erties have meaningful probabilistic and statistical interpretations.

While the use of p-adic numbers has not yet become as common a practice in many do-
mains, they have started to find numerous applications, for example in mathematical physics
[165]. Moreover, the interest and research activity addressing probabilistic and statistical
questions in the p-adic setting have been gaining momentum starting from the early work of
Evans [60, 64, 65], Bikulov, Vladimirov, Volovich and Zelenov [18, 165] to the more recent
developments [16, 26, 28, 62, 105, 118] and Chapter 2 to mention a few . In this line of
thought, it is quite desirable to have an efficient method of sampling from p-adic manifolds.

In this chapter, inspired by the work of Breiding and Marigliano [23], we tackle the prob-
lem of sampling from a p-adic algebraic variety with a prescribed probability distribution by
intersecting it with random linear spaces of complementary dimension. Our results provide
p-adic analogues of the results in [23] and are in line with p-adic analogs of Crofton’s for-
mulas in integral geometry (see [105] and [26] for p-adic integral geometry) which provide a
link between the volume of a manifold and its expected number of intersection points with
random linear spaces.
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Figure 3.1: An illustration of the sampling method.

Over the real or complex numbers, sampling from manifolds (especially in the param-
eterized case) often involves using a Markov chain sampling (Metropolis algorithm, Gibbs
sampler, hit-and-run algorithm etc.) [39, 9, 114]. While this method is fairly simple (both
computationally and mathematically), it approximates the desired probability measure only
asymptotically and requires a study of the mixing time of the Markov chain in question [40,
41]. Moreover, since nonarchimedean local fields are totally disconnected topological spaces,
the usual Markov chain sampling algorithms are ill suited for such a setting. Our method
has the advantage of sampling exactly from the desired probability density. Also, given its
geometric nature, it works regardless of the nature of the topology involved.

To set things up, let K be a nonarchimedean local field with a normalized discrete
valuation map; val : K ↠ Z ∪ {+∞}. We fix once and for all a uniformizer ϖ; that is
an element ϖ ∈ K such that val(ϖ) = 1. We denote by O := {x ∈ K : val(x) ≥ 0} the
valuation ring of K; and by k := O/ϖO its residue field. It is known that k is isomorphic to
a finite field Fq with q elements; where q is a power of the characteristic p := char(k). The
valuation val defines an absolute value | · | on K by setting |x| := q− val(x) for x ∈ K. We
denote by µ the unique real-valued Haar measure on K such that µ(O) = 1. We refer to
Section 1.1.2 for an introduction to local fields and to [146, Part 1] for a detailed account.

Remark 3.1. nonarchimedean local fields come in two flavors. Those that have the same
characteristic as their residue fields are isomorphic (as topological fields) to Fq((ϖ)); the field
of Laurent series in one variable ϖ with coefficients in Fq. The second type has characteristic
0 and are finite extensions of the field Qp of p-adic numbers for some prime p.

Let us fix a positive integer N ≥ 2. We denote by AN = KN the N -dimensional affine
space over K. The space AN inherits from K the product Haar measure, which we denote
by µAN . When there is no risk of confusion, we simply denote this measure by dx. We endow
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AN with the norm

∥x∥ = max
1≤i≤N

|xi|, for x = (x1, . . . , xN)⊤ ∈ AN ,

and the valuation

val(x) = min
1≤i≤N

val(xi) = − logq(∥x∥), for x = (x1, . . . , xN)⊤ ∈ AN .

This makes AN a metric space with the metric given by d(x, y) = ∥x− y∥ for x, y ∈ AN . We
refer the reader to Section 1.1.3 for more details on norms, valuation and orthogonality.

An affine algebraic variety in AN is the zero set of a system of polynomials p = (p1, . . . , pr)
in K[x1, . . . , xN ], i.e.

{x ∈ AN : p1(x) = · · · = pr(x) = 0}.

We refer to smooth and irreducible1 varieties over K (affine or projective) as algebraic man-
ifolds.

Although the notions of dimension and degree of an algebraic K-manifold X are the
usual notions from algebraic geometry, the notion of volume on X is not as standard. Let
X ⊂ AN be an affine algebraic K-manifold of dimension n. For ϵ > 0 and x ∈ AN , let us
denote by BN(x, ϵ) =

{
y ∈ AN : d(x, y) ≤ ϵ

}
the ball of radius ϵ and center x. The volume

measure µX on X is defined as follows, for an open set in V ⊂ X:

µX(V ) := lim
ϵ→0

µAN

( ⋃
x∈V

BN(x, ϵ)

)
µAN−n (BN−n(0, ϵ))

= lim
r→∞

qr(N−n)µAN

(⋃
x∈V

BN(x, q−r)

)
, (3.1)

This limit exists (see [105, 147]) and the map µX thus defined2 is a measure on the Borel
σ-algebra of X.

Remark 3.2. When X ⊂ PN−1 is a projective manifold, one can still define a volume
measure µX in the same manner by replacing the measure µAN in (3.1) with its normalized
push-forward to the projective space PN−1, and by defining balls in PN−1 using Fubini–Study
metric. Here we focus on the affine case and delay our treatment of projective manifolds
until Section 3.4.

Given a function f : X → R that is integrable with respect to the measure µX , we wish
to:

1. Estimate the integral
∫
X
f(x)µX(dx).

1The usual notion of smoothness and irreducibility from algebraic geometry.
2We can equivalently define a volume measure on X using local charts and differential forms in the usual

way.



CHAPTER 3. SAMPLING FROM p-ADIC ALGEBRAIC MANIFOLDS 44

2. Sample a random variable ξ ∈ X with the probability density f(x)/
∫
X
f(x)µX(dx),

when f is non-negative and
∫
X
f(x)µX(dx) > 0.

Our sampling method entails intersecting the manifold X with affine linear spaces of
complementary dimension. For a matrix A ∈ Kn×N and b ∈ Kn, we denote by LA,b the
affine linear space implicitly defined as follows:

LA,b := {x ∈ AN : Ax = b}.

Such a space is generically of dimension N − n because the set of (A, b) ∈ Kn×N ×Kn for
which LA,b has dimension N −n, is non-empty and Zariski-open. The intersection LA,b ∩X,
where A ∈ Kn×N and b ∈ Kn, is generically finite and its size is bounded by the degree
of X (see Section 3.2.1). This is because the set of points (A, b) ∈ Kn×N × Kn for which
the intersection is finite, is non-empty and Zariski-open. Loosely speaking, sampling from
X is then reduced to sampling a random plane LA,b and then sampling a random point
from the finite intersection LA,b ∩ X. However, given a target probability density on X,
neither sampling step is entirely straightforward. For that reason, we must introduce a
weight function wX : X → R>0 on X. Before we do so however, we need to define two
quantities it involves.

Definition 3.3. Let a, b ≥ 1 be two positive integers, and M ∈ Ka×b a matrix. As in
Proposition 1.24, let us write the Smith normal form of M as M = UDV , where U ∈
GL(a,O);V ∈ GL(b,O); and D = diag(ϖv1 , . . . , ϖvmin(a,b)) ∈ Ka×b with v1 ≥ · · · ≥ vmin(a,b) ∈
Z ∪ {∞}. We then define the absolute determinant of M as follows:

N(M) := |ϖv1 · · ·ϖmin(a,b)| = q−v1−···−vmin(a,b) .

If E,F are K-vector spaces of respective dimensions b, a and φ : E → F is K-linear, we
define

N(φ) = N(A),

where A ∈ Ka×b is a matrix representing φ in orthonormal bases of E and F in the sense of
Section 1.1.3.

Definition 3.4. Let X ⊂ AN be an affine algebraic manifold of dimension n, and x be a
point on X. Let U ∈ GL(N,O) such that Ux = (0, . . . , ϖval(x))⊤, and let W ∈ ON×n be a
matrix whose columns form an orthonormal basis of the tangent space TxX. Finally, let us
set Sx = diag(1, . . . , 1, ϖmax(0,− val(x))) ∈ KN×N . Then we define

Nr(X, x) := N(SxUW ).

It is not so clear that this definition does not depend on the choice of W and U , but we
shall see in Lemma 3.15 that this is the case. The quantity Nr(X, x) can be interpreted as
a “measure” of how far the point x is from being an O-point of X.

Now we are ready to define a weight function wX on X.
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Definition 3.5. Let X ⊂ AN be an affine algebraic manifold of dimension n over K. For a
point x ∈ X, we define the weight of x in X as follows

wX(x) =
1− q−(n+1)

1− q−1
max(1, ∥x∥n)

Nr(X, x)
.

Remark 3.6. 1. Notice that, on the O-points X ∩ ON of the manifold X, we have
Nr(X, x) = 1 so the weight function wX is constant and takes the value

wX(x) =
1− q−(n+1)

1− q−1
, x ∈ X ∩ ON .

2. The weight function wX is not intrinsic. As we shall see in Proposition 3.16, it de-
pends on how the random linear space LA,b is distributed, or more precisely on the
distribution of the random element (A, b) ∈ Kn×N ×Kn.

Given a real valued function f on X, we define the following function on Kn×N ×Kn:

f(A, b) :=
∑

x∈X∩LA,b

wX(x)f(x), for (A, b) ∈ Kn×N ×Kn,

where the sum is 0 by convention when X ∩ LA,b is empty or infinite. Our first result deals
with integrating a real-valued integrable function f on a manifold X. Namely, we show that
the integral can be expressed as the expectation of a real-valued random variable that we
can sample. As a matter of notation, random objects shall be bold-faced throughout this
chapter.

Theorem 3.7. Let X ⊂ AN be an n-dimensional affine algebraic manifold defined over K.
Let (A, b) be a random variable in Kn×N ×Kn with distribution 1A∈On×N , b∈OndAdb. Then
we have: ∫

X

f(x)µX(dx) = E
[
f(A, b)

]
.

With this theorem in hand, one can evaluate integrals, up to a certain confidence interval,
using Monte-Carlo methods. We discuss this in more detail in Section 3.5.

Our second result deals with sampling a random point ξ from a manifold X with a
prescribed probability density f with respect to the natural volume measure µX on X:

Theorem 3.8. Let X ⊂ AN be an n-dimensional affine algebraic manifold defined over
K. Let f : X → R≥0 be a probability density with respect to µX . Let (Ã, b̃) be the random
variable in Kn×N ×Kn with distribution

f(A, b) 1A∈On×N , b∈On dAdb.
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Let ξ be the random variable obtained by intersecting X with the random space LÃ,b̃ and
choosing a point x in the finite set X ∩ LÃ,b̃ with probability

wX(x)f(x)

f(Ã, b̃)
.

Then ξ has density f with respect to the volume measure µX on X.

We give similar results for projective manifolds, namely Theorems 3.22 and 3.23, in
Section 3.4. We provide an implementation (in SageMath [142]) of the sampling method we
describe in this chapter (in particular cases) in following repository:

https://mathrepo.mis.mpg.de/SamplingpAdicManifolds/index.html (3.2)

Remark 3.9. Although most results in this chapter stated for algebraic manifolds, there is no
issue working with an irreducible variety X (affine or projective) with potential singularities.
This is because the singular locus Xsing is lower dimensional in X and we can work with the
algebraic manifold X \Xsing. Our sampling method will then produce a point in X that is
smooth with probability 1.

This chapter is organized as follows. In Section 3.2, we collect some necessary background
on p-adic varieties and preliminaries on differential geometry. In Section 3.3 we prove the
main results, i.e. Theorems 3.7 and 3.8. In Section 3.4 is we discuss the case of projective
varities. Finally, in Section 3.5 we discuss how to sample in practice and go over some
examples and applications in Section 3.6.

3.2 Preliminaries

3.2.1 A pinch of intersection theory

In this section we recall some facts from intersection theory of algebraic varieties (see [86,
Section 18] and [47] for more details). The reader may skip this and come back to it when
necessary.

Let X ⊂ AN be an affine algebraic manifold of dimension n and let d be its degree. Then
there exists a variety VX in Kn×N ×Kn of lower dimension such that

#(LA,b ∩X) ≤ d for any (A, b) ∈ (Kn×N ×Kn) \ VX . (3.3)

Since VX is a lower dimensional variety in Kn×N ×Kn it has measure 0 with respect to the
volume measure dAdb. So if (A, b) is a random variable that has a density with respect to
dAdb, then with probability 1, the intersection LA,b∩X contains at most d points. So, given
a real valued function f : X → R the function

f : (A, b) 7→
∑

x∈LA,b∩X

wX(x)f(x),

https://mathrepo.mis.mpg.de/SamplingpAdicManifolds/index.html
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is well defined on the Zariski open set Kn×N ×Kn \ VX .

Similarly, if X ⊂ PN−1 is a projective algebraic K-manifold of dimension n and degree
d, then the set of matrices A ∈ Kn×N such that the intersection LA ∩X is infinite, where

LA = {x ∈ PN−1 : Ax = 0},

is a lower dimensional algebraic varietyWX in Kn×N . HenceWX has measure 0 with respect
to the Haar measure dA and

#(LA ∩X) ≤ d for any A ∈ Kn×N \WX . (3.4)

Moreover, given a real valued function f : X → R the function

f : A 7→ (1 + q−1) · · · (1 + q−n)
∑

x∈LA∩X

f(x)

is well defined on the Zariski open set Kn×N \WX .

3.2.2 The p-adic co-area formula

In this section we recall a few notions on p-adic integration on manifolds. We refer the
reader to [26, 105, 145, 134] and references therein for a more detailed account.

Let X be a smooth algebraic (affine or projective) manifold defined over K. One can
then endow the variety X with the structure of a K-analytic manifold in the sense of [26]
and a volume measure µX . A definition of the latter is given in Equation (3.1) for the affine
case and in Equation (3.8) for the projective case.

Definition 3.10. Let X and Y be two K-analytic manifolds, x ∈ X and φ : X → Y be a
K-analytic map. We define the absolute Jacobian of φ at x as

J(φ, x) := N(Dx φ),

the absolute determinant of the K-linear map Dx φ : TxX → Tφ(x)Y .

The following is the p-adic coarea formula from [26].

Theorem 3.11 ([26, Theorem 6.2.1]). Let X and Y be two analytic K-manifolds with
dim(X) ≥ dim(Y ) and let φ : X → Y be a K-analytic map. Then, for any function
f : X → R that is integrable with respect to the volume measure on X, we have∫

X

J(φ, x)f(x)µX(dx) =

∫
Y

(∫
φ−1(y)

f(z)µφ−1(y)(dz)

)
µY (dy).
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Corollary 3.12. Let X and Y be two K-analytic manifolds and φ : X → Y an analytic map
from X to Y .

(i) Suppose that ξ is an X-valued random variable with density f with respect to µX . Then
the density g of η = φ(ξ) with respect to µY is

g(y) =

∫
φ−1(y)

f(z)

J(φ, z)
µφ−1(y)(dz).

(ii) Let η be a Y -valued random variable with density g with respect to µY and let ξ be
the X-valued random variable such that, conditioned on (Y = y), the variable ξ has
density fy on φ−1(Y ) with respect to µφ−1(y). Then ξ has density

f(x) = J(φ, x)g(φ(x))fφ(x)(x).

Proof. (i) Let V be a Borel set in Y . Applying Theorem 3.11 we get

P (η ∈ V ) =

∫
X

1V (φ(x))f(x)µX(dx)

=

∫
Y

(∫
φ−1(y)

f(z)

J(φ, z)
1V (φ(z))µφ−1(y)(dz)

)
µY (dy)

=

∫
Y

(∫
φ−1(y)

f(z)

J(φ, z)
µφ−1(y)(dz)

)
1V (y)µY (dy)

=

∫
Y

g(y)µY (dy).

(ii) Let U be a Borel set in X. Then, applying Theorem 3.11 we get

P (ξ ∈ U) = E[P (ξ ∈ U |η)]

=

∫
Y

(∫
φ−1(y)

fy(z)1U(z)µφ−1(y)(dz)

)
g(y)µY (dy)

=

∫
Y

(∫
φ−1(y)

g(φ(z))fφ(z)(z)1U(z)µφ−1(y)(dz)

)
µY (dy)

=

∫
X

J(φ, x)g(φ(x))fφ(x)(x)1U(x)µX(dx)

=

∫
X

f(x)1U(x)µX(dx).

We denote by Gr(n,Km) the Grassmannian variety parametrizing n-dimensional vector
subspaces of Km. The orthogonal group GL(m,O) has a natural action on Gr(n,Km).
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Lemma 3.13. Let m ≥ n ≥ 1 be two integers. There exists is a unique orthogonally
invariant probability distribution on the Grassmanian Gr(n,Km).

Proof. Since GL(m,O) acts transitively on Gr(n,Km) and the stabilizer of the subspace
generated by the first n vectors of the standard basis of Km is

H =

{(
A C
0 B

)
: A ∈ GL(k,O), B ∈ GL(m− n,O) and C ∈ On×(m−n)

}
,

we can write Gr(n,Km) as a homogeneous space as follows

Gr(n,Km) = GL(m,O)/H.

Let ν be a probability measure on GL(m,O)/H that is GL(m,O)-invariant. Then its pull-
back ν∗ to GL(m,O) is also GL(m,O) invariant, so it is a Haar measure on GL(m,O) with
ν∗(GL(m,O)) = 1. We then conclude since GL(m,O) is a compact topological group, there
is a unique Haar measure on GL(m,O) up to scaling.

We end this section with the following simple but useful lemma.

Lemma 3.14. Let n ≥ 1 be a positive integer, then we have∫
C∈On×n

|det(C)|dC =
1− q−1

1− q−(n+1)
.

Proof. Let C be a random matrix in Kn×n whose entries are independent and uniform in
O. Then the integral in question is the expectation E[|det(C)|]. We can compute this
expectation using the distribution of |det(C)| from [62, Theorem 4.1]. We then have

E[|det(C)|] = (1− q−1) · · · (1− q−n)
∞∑

m=0

(
n+m− 1

m

)
q−1

q−2m,

where
(
n
k

)
q−1 denotes the usual q−1-binomial coefficient (also known as the Gaussian binomial

coefficient):(
n

k

)
q−1

:=
(1− q−1) · · · (1− q−n)

(1− q−1) · · · (1− q−k)× (1− q−1) · · · (1− q−(n−k))
for n ≥ k ≥ 0

Then using the well known generating series

∞∑
m=0

(
n+m− 1

m

)
q−1

tm =
n−1∏
k=0

1

1− q−kt
,

we get

∞∑
m=0

(
n+m− 1

m

)
q−1

q−2m =
n−1∏
k=0

1

1− q−k−2
=

1

(1− q−2) · · · (1− q−(n+1))
.

So we deduce that

E[| det(C)|] =

∫
C∈On×n

| det(C)|dC =
1− q−1

1− q−(n+1)
.
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3.3 Sampling from affine manifolds

In this section, we proceed to proving the main results of this chapter, namely Theorems
3.7 and 3.8. Similar results for projective manifolds are stated and proved in Section 3.4.
We start with the following:

Lemma 3.15. Let X ⊂ AN be an affine algebraic K-manifold of dimension n. The definition
of Nr(X, x) in Definition 3.4 does not depend on the choice of U and W .

Proof. Set Sx = diag(1, . . . , 1, ϖmax(0,− val(x))) and let U1, U2 ∈ GL(N,O) andW1,W2 ∈ ON×n

be such that

(1) U1x = U2x = (0, . . . , 0, ϖval(x))⊤,

(2) columns of W1,W2 are two orthonormal bases of the tangent space TxX.

Then there exists V ∈ GL(n,O) such that W2 = W1V . Let A = U2U
−1
1 and B = SxAS

−1
x

so that we have B(SxU1W1)V = SxU2W2. We claim that B ∈ GL(N,O) is an orthogonal
matrix. To see why, notice that, thanks to condition (1), the matrix A is of the form

A =

 A′
0
...
0

z1 · · · zN−1 1


where A′ ∈ GL(N − 1,O) and z1, . . . , zN−1 ∈ O. We then deduce that B is of the form

B =

 A′
0
...
0

αz1 · · · αzN−1 1


where α = ϖmax(0,− val(x)) ∈ O. So we deduce that B ∈ GL(N,O). Now, since V and B are
both orthogonal, from Definition 3.3 we can see that

N(SxU1W1) = N(SxU2W2) = N(BSxU1W1V ),

which finishes the proof.

This means that the weight function wX in Definition 3.5 is indeed well defined.

Proposition 3.16. Let X ⊂ AN be an affine algebraic K-manifold of dimension n and x a
point on X. We then have

wX(x) =

(∫
A∈Kn×N

|det(A|TxX)|1A∈On×N ,∥Ax∥≤1dA

)−1
.
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Proof. Let U ∈ GL(N,O) such that y := Ux = (0, . . . , 0, ϖval(x))⊤. Let W be a matrix whose
columns form an orthonormal basis of TxX. Let us fix the matrixRx = diag(1, . . . , 1, ϖv(x)) ∈
KN×N . Let us denote by IX(x) the following integral

IX(x) =

∫
A∈Kn×N

|det(A|TxX)|1A∈On×N 1Ax∈OndA.

Then, by a change of variable BU = A, we have

IX(x) =

∫
B∈Kn×N

|det((BU)|TxX)|1B∈On×N 1By∈OndB

=

∫
B∈Kn×N

|det(BUW )|1B∈On×N 1BRx∈On×NdB

=

∫
B∈On×N∩(On×NR−1

x )

|det(BUW )|dB.

Notice the following equality

On×N ∩ On×NR−1x = On×NSx,

where Sx = diag(1, . . . , 1, ϖmax(0,− val(x))) ∈ KN×N . So, using the change of variables B =
B′Sx, we deduce that

IX(x) =

∫
B∈On×NSx

|det(BUW )|dB

=

(
1

max(1, ∥x∥)

)n ∫
B′∈On×N

|det(B′SxUW )|dB′.

Let us write the Smith normal form of the matrix SxUW , i.e.

SxUW = V1DV2,

where V1 ∈ GL(N,O), V2 ∈ GL(n,O) and D = diag(ϖv1 , . . . , ϖvn) ∈ KN×n. So, by the
change of variables B′V1 = C, we get

IX(x) =
1

max(1, ∥x∥n)

∫
B′∈On×N

|det(B′V1DV2)|dB′

=
1

max(1, ∥x∥n)

∫
C∈On×N

|det(CD)|dC

=
q−(v1+···+vn)

max(1, ∥x∥n)

∫
C∈On×n

|det(C)|dC.

Combining the previous equation with Definition 3.4, Definition 3.5 and Lemma 3.14, we get

IX(x) =
Nr(X, x)

max(1, ∥x∥n)

1− q−1

1− q−(n+1)
=

1

wX(x)

as desired.
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Remark 3.17. (i) Proposition 3.16 gives another proof of the fact that Nr(X, x) does
not depend on the choice of U and W in Definition 3.4.

(ii) Recall, from Remark 3.6, that the weight function is constant on X ∩ON . Unwinding
the definition of wX we can also see that for U ∈ GL(N,O) and x ∈ X we have
wUX(Ux) = wX(x) where UX = {Ux : x ∈ X}.

(iii) If the probability density f we wish to sample from is supported on X∩ϖ−rON , we can
scale X by ϖr and sample ξ′ from ϖrX ∩ON (where the weight function is constant)
with density f(ϖ−r·). We can then obtain a random variable ξ on X with density f
by taking ξ = ϖ−rξ′.

We are now ready to prove our main theorems.

Proof of Theorem 3.7. By definition we have

E(f(A, b)) =

∫
Kn×N×Kn

f(A, b)1A∈On×N ,b∈OndAdb.

Let us define the following map:

φ : Kn×N ×X → Kn×N ×Kn, (A, x) 7→ (A,Ax). (3.5)

The map φ is analytic and its differential is given by

D(A,x)φ : Kn×N × TxX → Kn×N ×Kn, (H, u) 7→ (H,Hx+ Au).

So the differential of φ at (A, x) acts trivially on the first component of the product Kn×N ×
TxX and acts as A|TxX on the second, i.e. its determinant is given by

J(φ, (A, x)) =
∣∣det(A|TxX)

∣∣ . (3.6)

Applying Theorem 3.11 for the function φ yields∫
Kn×N×X

∣∣det(A|TxX)
∣∣wX(x)f(x)1A∈On×N , Ax∈On dA µX(dx)

=

∫
Kn×N×X

J(φ, (A, x))wX(x)f(x)1A∈On×N , Ax∈On dA µX(dx)

=

∫
Kn×N×Kn

(∫
φ−1(A,y)

wX(z)f(z)µφ−1(A,y)(dz)1A∈On×N , Az∈On µφ−1(A,y)(dz)

)
dAdy

=

∫
Kn×N×Kn

(∫
φ−1(A,y)

wX(z)f(z)µφ−1(A,y)(dz)

)
1A∈On×N , y∈On dAdy.

But, for A ∈ Kn×N and y ∈ Kn we have

φ−1((A, y)) = {(A, z) ∈ Kn×N ×X : Az = y and z ∈ X},
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and this is a finite set for almost every A and y. So for almost every A and y, the measure
µφ−1(A,y) equals the counting measure on the finite set φ−1((A, y)) and we then have∫

Kn×N×X
|det(A|TxX)|wX(x)f(x)1A∈On×N , Ax∈On dAµX(dx)

=

∫
Kn×N×Kn

∑
x∈X,
Ax=y

wX(x)f(x)

 1A∈On×N ,y∈On dAdy

=

∫
Kn×N×Kn

f(A, y)1A∈On×N , y∈On dAdy

=E[f(A, b)].

Hence the equation

E
[
f(A, b)

]
=

∫
X

(∫
Kn×N

|det(A|TxX)|1A∈On×N , Ax∈OndA

)
wX(x)f(x)µX(dx). (3.7)

Then, combining Equation (3.7) and Proposition 3.16, we conclude that

E
[
f(A, b)

]
=

∫
X

f(x)µX(dx).

Proof of Theorem 3.8. Let (Ã, ξ) be the random variable, with values in Kn×N×X, obtained

by first sampling (Ã, b̃) ∈ Kn×N ×Kn from with distribution f(A, b)1A∈On×N ,b∈OndAdb and
then choosing a point ξ from LÃ,b̃ ∩X with probability

wX(x)f(x)

f(Ã, b̃)
.

Then applying Corollary 3.12-(ii) to the map φ from Equation (3.5), we deduce that (Ã, ξ)
has density

g(Ã,ξ)(A, x) = f (φ(A, x)) 1φ(A,x)∈On×N×On

wX(x)f(x)

f(φ(A, x))
J(φ, (A, x))

= wX(x)f(x)1φ(A,x)∈On×N×On J(φ, (A, x))

with respect to the volume measure dAµX(dx) onKn×N×X. Computing the second marginal
of this joint distribution, we deduce that the density gξ of ξ is

gξ(x) =

∫
A∈Kn×N

wX(x)f(x)J(φ, (A, x))1φ(A,x)∈On×N×OndA

= wX(x)f(x)

∫
A∈Kn×N

|det(A|TxX)|1A∈On×N ,Ax∈OndA

= f(x).

The second (resp. third) equation follows from Equation (3.6) (resp. Proposition 3.16). So,
as desired, ξ has density f with respect to µX on X.
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3.4 Sampling from projective manifolds

This section deals with sampling from projective algebraic manifolds. More precisely, we
shall state and prove analogs of Theorem 3.7 and Theorem 3.8 in projective space.

Let N ≥ 2 be an integer. We denote by PN−1 the projective space of dimension N − 1
over K. Let us denote by SN−1 the unit sphere in KN , i.e.,

SN−1 := {x ∈ KN : ∥x∥ = 1}.

We warn the reader that, unlike the Euclidean setting, the unit sphere is actually an open
set in KN and has dimension N (as a topological space). Consider the Hopf fibration

ψ : SN−1 → PN−1, (x1, . . . , xN) 7→ (x1 : · · · : xN).

The projective space PN−1 can be endowed with a metric d defined as follows:

d(x, y) = ∥x̃ ∧ ỹ∥ , x, y ∈ PN−1

where x̃ ∈ ψ−1(x), ỹ ∈ ψ−1(y) and the norm ∥x̃ ∧ ỹ∥ is the standard norm in
2∧
KN associated

to its standard lattice
2∧
ON . This metric is called the Fubini-Study metric. For x ∈ PN−1

and ϵ > 0 let us denote by

BN−1(x, ϵ) := {y ∈ PN−1 : d(x, y) ≤ ϵ}

the ball of radius ϵ around x.
Endowed with the metric d, the projective space PN−1 is a compact metric space on

which we define a volume measure µPN−1 as follows

µPN−1 :=
1

1− q−1
ψ∗µSN−1 ,

that is the normalized push-forward of µSN−1 by ψ3. The measure µPN−1 is finite and we
have

µPN−1(PN−1) =
1− qN

1− q−1
.

Remark 3.18. Notice that from Lemma 3.14, we have∫
C∈On×n

| det(C)|dC =
1

µPn(Pn)
.

3Notice that µSN−1(SN−1) = 1− q−N .
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A projective algebraic variety in PN−1 is the zero set of a system of homogeneous poly-
nomials p = (p1, . . . , pr) in K[x1, . . . , xN ]; that is

{x ∈ PN−1 : p1(x) = · · · = pr(x) = 0}.

We refer to irreducible and smooth projective varieties as projective algebraic manifolds.
Let X ⊂ PN−1 be an algebraic projective manifold of dimension n ≥ 1. Similar to the

affine case (3.1), we can define a volume measure on X as follows:

µX(V ) := lim
ϵ→0

µPN−1

( ⋃
x∈V

BN−1(x, ϵ)

)
µPN−1−n (BN−1−n(0, ϵ))

, for V ⊂ X open. (3.8)

The limit in (3.8) exists (see [147, 105] for more details) and this defines a volume measure
µX on the projective manifold X.

Remark 3.19. For our purposes, the main difference between the affine and projective
spaces is that the projective space is a compact topological space (with the quotient topology
induced by the Hopf fibration ψ). So, unlike the affine case, a projective algebraic manifold
admits a uniform probability density. Also, loosely speaking, there are no “far” points in
the projective space, so as we shall see, the weight function is constant or, in other words,
no point gets more weight than another. We can say that the space is, in some sense,
“isotropic”.

Before we state our results for projective manifolds, we recall a few facts and establish a
couple of preliminary results.

3.4.1 Preliminaries

Suppose that X ⊂ PN−1 is a projective algebraic manifold of dimension n defined by
homogeneous polynomials p1, . . . , pr ∈ K[x1, . . . , xN ] and let x be a point in X. The tangent
space TxX can be defined in many ways, and one way to do so is the following. The cone
X̃ ⊂ AN over X defined as follows

X̃ = {(λy1, . . . , λyN) ∈ AN : λ ∈ K and (y1 : · · · : yN) ∈ X}.

This is an affine algebraic variety which is smooth at every non-zero point x ∈ X̃ \ {0} and

has dimension n+ 1. The tangent space TxX̃ is a linear subspace in KN of dimension n+ 1
and x ∈ TxX̃. The tangent space TxX can then be defined as an orthogonal complement4

of the line K · x in TxX̃ and we thus view TxX as a linear subspace5 of KN of dimension n.

4All such vector spaces are isomorphic to one another.
5The projective tangent space is also often defined as the projectivisation of TxX̃.
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Proposition 3.20. Let X ⊂ PN−1 be a projective algebraic manifold of dimension n and let
us define X ⊂ An×N × PN−1 as follows:

X = {(A, x) ∈ An×N ×X : Ax = 0}.

Then X is a manifold, and for (A, x) ∈ X we have

T(A,x)X = {(H, h) ∈ Kn×N × TxX : Hx+ Ah = 0}.

Moreover, if φ, ϕ are the projections from X to An×N and PN−1 respectively, then we have

J(φ, (A, x))

J(ϕ, (A, x))
= |det(A|TxX)|,

for (A, x) ∈ X such that A|TxX is an isomorphism.

Proof. Let (p1, . . . , pr) ∈ K[x1, . . . , xN ] be homogeneous polynomials generating the ideal of
X. Let (A, x) ∈ X and let Jx be the following Jacobian matrix

Jx =

(
∂pi
∂xj

(x)

)
1≤i≤r,1≤j≤N

.

Then, considering X as the variety in An×N × PN−1 cut out by the equations Ax = 0 and
p1(x) = · · · = pr(x) = 0 we can compute the Jacobian matrix of X at the point (A, x). This
matrix represents the linear map

Kn×N ×KN → Kn ×Kr, (H, h) 7→ (Hx+ Ah, Jxh).

The tangent space of X at (A, x) is the kernel of this map, so

T(A,x)X = {(H, h) ∈ Kn×N × TxX : Hx+ Ah = 0}.

The projection maps φ, ϕ are clearly analytic, and for any (A, x) ∈ X we have

d(A,x)φ : T(A,x)X → Kn×N d(A,x)ϕ : T(A,x)X → TxX

(H, h) 7→ H (H, h) 7→ h.

Suppose that (A, x) ∈ X is such that A|TxX is an isomorphism. Fix U ∈ GL(N,O) such
that Ux = (1 : · · · : 0)⊤ and define the maps

π1 : Kn×N → T(A,x)X π2 : TxX → T(A,x)X
H 7→ (H,−(A|TxX)−1Hx) h 7→ ((−Ah|0)U, h)

where (−Ah|0) ∈ Kn×N . Notice that d(A,x)φ ◦ π1 = IdKn×N and d(A,x)ϕ ◦ π2 = IdTxX . Since
A ∈ On×N we have

N(π2) = 1,
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because π2 sends any orthonormal basis of TxX to an orthonormal family in T(A,x)X ⊂
Kn×N ×KN . Also, since A ∈ ON×N , the singular values of A|TxX are all in O so the singular
values of A−1|TxX

have negative or zero valuation. From this we can see that

N(π1) = |det(A|TxX)|−1.

We deduce that
J(φ, (A, x))

J(ϕ, (A, x))
=

N(π2)

N(π1)
= |det(A|TxX)|.

Lemma 3.21. Let X be a projective manifold of dimension n in PN−1 and x be a point on
X. Set Mx := {A ∈ Kn×N : Ax = 0}. Then∫

Mx

|det(A|TxX)|1A∈On×NµMx(dA) =
1− q−1

1− q−(n+1)
.

Proof. Let W ∈ ON×n be a matrix whose columns form an orthonormal basis of TxX and
let U ∈ GL(N,O) such that Ux = e1 = (1 : 0 : · · · : 0)⊤. The space Mx is a vector space of
dimension (N − 1)× n and Me1U = Mx. So, with the change of variable BU = A, we get∫

Mx

|det(A|TxX)|1A∈On×NµMx(dA) =

∫
A∈Mx

|det(AW )|1A∈On×NµMx(dA)

=

∫
B∈Me1

|det(BUW )|1B∈ON×n µMx(dA)

=

∫
C∈On×(N−1)

|det((0 | C)UW )|dC.

Let W̃ ∈ K(N−1)×n be the matrix obtained from UW by deleting the first row and let us
write the Smith normal form of W̃ as

W̃ = V1DV2,

where V1 ∈ GL(N−1,O), V2 ∈ GL(n,O) and D = diag(ϖv1 , . . . , ϖvn) ∈ K(N−1)×n. We then
deduce that∫

Mx

|det(A|TxX)|1A∈On×NµMx(dA) =

∫
C∈On×(N−1)

|det(CW̃ )|dC

= q−(v1+···+vn)

∫
C∈On×N

|det(C)|dC

= N(W̃ )
1− q−1

1− q−(n+1)
.

Since X is a projective manifold, the tangent space TxX is orthogonal to x (see Section 3.4.1).

We deduce that the columns of UW are orthogonal to (1, . . . , 0)⊤ so W̃ has orthonormal

columns. Hence N(W̃ ) = 1 which finishes the proof.
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Similarly to the affine case given a real valued function f : X → R, we define the weighted
average function of f as follows:

f(A) =
∑

x∈LA∩X

f(x), for A ∈ Kn×N .

By convention, the sum is taken to be 0 whenever LA ∩X is empty or infinite.

3.4.2 Sampling from projective manifolds

Now we state and prove the analogues of Theorems 3.7 and 3.8 for the projective case.

Theorem 3.22. Let X ⊂ PN−1 be an n-dimensional projective algebraic manifold defined
over K. Let A be a random variable in Kn×N with distribution 1A∈On×NdA. Then we have∫

X

f(x)µX(dx) = µPn(Pn) E[f(A)],

with

µPn(Pn) =
1− q−(n+1)

1− q−1

Proof. Let X ⊂ An×N × PN−1 be the algebraic variety defined by

X :=
{

(A, x) ∈ An×N ×X : Ax = 0
}
.

Let us denote by φ and ϕ the natural projections from X onto Kn×N and X respectively,
and, for a point x ∈ X, set Mx := {A ∈ Kn×N : Ax = 0}. We apply Theorem 3.11 on φ and
then on ϕ to get the following

E
[
f(A)

]
=

∫
Kn×N

∑
x∈X,
Ax=0

f(x)

 1A∈On×NdA

=

∫
Kn×N

( ∫
(A,z)∈φ−1(A)

f(z)1A∈On×Nµφ−1(A)(dz)

)
dA

=

∫
X
J(φ, (A, x))f(x)1A∈On×NµX (dA, dx)

=

∫
X

(∫
(A,x)∈ϕ−1(x)

J(φ, (A, x))

J(ϕ, (A, x))
1A∈On×Nµϕ−1(dA)

)
f(x)µX(dx)

=

∫
X

(∫
A∈Mx

|det(A|TxX)|1A∈On×Nµϕ−1(x)(dA)

)
f(x)µX(dx)

=
1− q−1

1− q−(n+1)

∫
X

f(x)µX(dx)

=
1

µPn(Pn)

∫
X

f(x)µX(dx).
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The last equality follows from Lemma 3.21.

Theorem 3.23. Let X ⊂ PN be an n-dimensional projective algebraic manifold defined over
K. Let f : X → R≥0 be a probability density with respect to the volume measure µX on X.

Let Ã be the random variable in Kn×N with distribution

1− q−(n+1)

1− q−1
f(A)1A∈On×NdA.

Let ξ be the random variable obtained by intersecting X with the random space LÃ and
choosing a point x in the finite set X ∩ LÃ with probability

f(x)

f(Ã)
.

Then ξ has density f with respect to µX .

Proof. Let (Ã, ξ) be the random variable with values in X (as defined in Proposition 3.20)

such that Ã has distribution
f(A)1A∈On×NdA

and, given Ã, ξ is a random point in LÃ ∩X with probability

P (ξ = x|Ã) =
f(x)

f(Ã)
.

Then, by virtue of Corollary 3.12-(ii) applied to the projection map φ : X → Kn×N , we

deduce that the density of (Ã, ξ), with respect to µX , is given by

fÃ,ξ(A, x) =
1− q−(n+1)

1− q−1
f(A)1A∈On×N

f(x)

f(A)
J(φ, (A, x))

=
1− q−(n+1)

1− q−1
f(x)J(φ, (A, x)),

for (A, x) ∈ X . Applying Corollary 3.12-(i) of to the projection map ϕ : X → X, we then
deduce that the density of ξ is

fξ(x) =

∫
ϕ−1(x)

1− q−(n+1)

1− q−1
f(x)

J(φ, (A, x))

J(ϕ, (A, x))
µϕ−1(x)(dA)

=
1− q−(n+1)

1− q−1
f(x)

∫
ϕ−1(x)

J(φ, (A, x))

J(ϕ, (A, x))
µϕ−1(x)(dA)

=
1− q−(n+1)

1− q−1
f(x)

∫
ϕ−1(x)

|det(A|TxX)|µϕ−1(x)(dA)

= f(x).

The last equation follows from the Lemma 3.21. This concludes the proof.
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3.5 Sampling linear spaces in practice

In this section we explain how to sample the random planes LA,b and LA explicitly.
We also explain how to sample the random planes LÃ,b̃ from Theorem 3.8 and LÃ from
Theorem 3.23 by rejection sampling, and we give bounds on how efficient this sampling
method is.

3.5.1 Sampling linear spaces explicitly

When the codimension of the manifold X is small (hypersurfaces for example), for com-
putational reasons, it is easier to find the intersection of X with a linear space E of com-
plementary dimension N − n when the latter has an explicit form. That is writing E in the
form

E = u+ spanK(x1, . . . , xN−n),

where u ∈ KN and x1, . . . , xN−n ∈ KN are linearly independent.

Lemma 3.24. Let A ∈ Kn×N , b ∈ Kn and B ∈ K(N+1)×(N−n+1) be matrices with random
i.i.d entries uniformly distributed in O, and u,x1, . . . ,xN−n ∈ KN be such that(

u
1

)
,

(
x1

0

)
, . . . ,

(
xN−n

0

)
form an orthonormal basis of columnspan (B) .

The random affine space Eu,x1,...,xN−n
:= u + span(x1, . . . ,xN−n) has the same probability

distribution as LA,b.

Proof. Notice that the linear space LA,b can be written as

LA,b =

{
x ∈ KN : (A| − b)

(
x
1

)
= 0

}
.

So it suffices to show that columnspan(B) and Ker((A| − b)) have the same distribution in
the Grassmannian Gr(N −n+ 1, KN+1). Thanks to Lemma 3.13, it is enough to notice that
the distributions of columnspan(B) and Ker((A|−b)) are both orthogonally invariant. This
is indeed the case since for any U ∈ GL(N + 1,O) we have6

(A| − b)U
d
= (A| − b) and UB

d
= B.

3.5.2 Rejection sampling

Let X ⊂ AN be an affine algebraic manifold of dimension n and degree d and let f : X →
R≥0 be a probability density function with respect to µX . We recall that the average function

6By “
d
=” we mean equality in distribution.
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f in the affine case is defined as

f(A, b) =
∑

x∈LA,b∩X

wX(x)f(x), for (A, b) ∈ Kn×N ×Kn,

where, by convention, the sum is 0 whenever the intersection LA,b ∩X is empty or infinite.

Proposition 3.25 (Rejection sampling). Suppose that there exists a constant M > 0 such
that f(A, b) < M almost everywhere with respect to dAdb. Let (A, b) be the random variable
with distribution 1A∈On×N ,b∈OndAdb and let η be a random variable such that

P (η = 1|(A, b)) =
f(A, b)

M
and P (η = 0|(A, b)) =

M − f(A, b)

M
.

Then, conditioned on the event (η = 1), the random variable (A, b) has distribution

f(A, b)1A∈On×N ,b∈OndAdb.

Proof. This follows directly from Bayes’ rule as follows

P
(
(A, b) ∈ (dA, db)|η = 1

)
=
P
(
η = 1|(A, b) ∈ (dA, db)

)
P
(
(A, b) ∈ (dA, db)

)
P (η = 1)

=
P
(
η = 1|(A, b) ∈ (dA, db)

)
P (η = 1)

1A∈On×N , b∈On dAdb

=
f(A, b)/M

E[f(A, b)]/M
1A∈On×N , b∈On dAdb

= f(A, b).

The last equation follows from Theorem 3.7 and the equality

P (η = 1) = E[P (η = 1|(A, b))] =
1

M
E[f(A, b)] =

1

M
.

Lemma 3.26. Let f : X → R≥0 be a probability density function supported on X ∩ϖ−rON

for some integer r ≥ 0. Suppose that κ := supx∈X f(x) <∞. Then we have

f(A, b) ≤ dq(n+1)r 1− q−(n+1)

1− q−1
κ.

In particular, if f is the uniform probability density on X ∩ ON then

f(A, b) ≤ d
1− q−(n+1)

1− q−1
.
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Proof. Let x ∈ X and U,W, Sx as in Definition 3.4. Then, since the columns of UW are
orthonormal in KN , its rows are in On and, modulo ϖ, they span kn. So we deduce that

Nr(X, x) = N(SxUW ) ≥ min(1, ∥x∥−1).

Hence, from Definition 3.5, we get

wX(X, x) ≤ 1− q−(n+1)

1− q−1
max(1, ∥x∥n+1).

Then for (A, b) ∈ Kn×N ×Kn we get

f(A, b) ≤ #(X ∩ LA,b)
1− q−(n+1)

1− q−1
q(n+1)r sup

x∈X
f(x).

Since the number of intersection points #(X ∩ LA,b) is at most d = deg(X) (except for a
measure zero set of (A, b) ∈ Kn×N × Kn, see Section 3.2.1), we deduce the desired result.
The second statement is an immediate consequence of the first one.

Remark 3.27. The bound given for f(A, b) is far from being sharp. Moreover, when one
wishes to sample from X ∩ϖ−rON , this bound is not very practical for rejection sampling.
In this case, it is better to use Remark 3.17 (iii).

Let h : X → R be an integrable function on X supported on X ∩ON and let (Ai, bi)i≥0
be a sequence of i.i.d random variables such that (Ai, bi) has the uniform distribution on
On×N ×On for all i ≥ 0. Finally, set

Sm(h) := h(A1, b1) + h(A2, b2) + · · ·+ h(Am, bm).

Then we have the following:

Proposition 3.28. The random variable Sm(h)/m converges almost surely to the integral
I(h) :=

∫
X
h(x)µX(dx) as m ↑ ∞. Moreover, if κ := supx∈X |h(x)| <∞, then

P

(∣∣∣∣Sm(h)

m
− I(h)

∣∣∣∣ ≥ ϵ

)
≤ κ2d2

ϵ2m

(
1− q−(n+1)

1− q−1

)2

, for m ≥ 1.

Proof. The first statement is an immediate application of the law of large numbers. The
second follows from Lemma 3.26 and Chebychev’s inequality.

Remark 3.29. While this section focuses on affine manifolds, the results discussed within
can be restated and proved for projective manifolds without much difficulty.

3.6 Applications and examples

In this section we discuss a few concrete examples and applications. The first case of
interest is when the algebraic manifold X is an algebraic group.
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3.6.1 Measures on algebraic groups

Let G be an algebraic group defined over K, by which we mean a smooth (either affine
or projective) algebraic variety together with

1. (identity element) an element e ∈ G,

2. (multiplication) a morphism m : G×G→ G, (x, y) 7→ xy,

3. (inverse) a morphism ι : G→ G, x 7→ x−1,

with respect to which G is a group (see [123] or [19] for a detailed account). In our discussion,
m and ι are K-morphisms and we are interested in the group G(K) of K points of G which
we also denote by G for simplicity and, for our purposes, G is embedded in some affine or
projective space over K.

The group G is a locally compact topological group and thus admits a left Haar measure;
that is a non-zero measure νG such that

ν(gA) = ν(A), for any Borel measurable set A ⊂ G.

which is unique up to scaling. If G is an algebraic group embedded in a projective space
as an algebraic manifold, then G is compact and the measure µG is then finite and also
right-invariant. In this case we normalize ν so that ν(G) = 1. In the case where G is
affine, the measure ν is finite on the set G(O) of O-points of G and we normalise ν so that
ν(G(O)) = 1.

Remark 3.30. It is not always the case that the points in G(O) form a subgroup of G. For
example, this fails to be the case for G = GL(n,K).

Example 3.31. Let n ≥ 1 be a positive integer. If G is either the special linear group
SL(n,K) or the special orthogonal group SO(n,K) or the symplectic group Sp(n,K), the
O-points G(O) form a compact subgroup of G. Moreover, the normalized Haar measure ν on
G(O) coincides with the uniform probability measure on G(O) with respect to the volume
measure µG (as defined in Equation (3.1)). This is because the measure µAn×n is invariant
under the action of GL(n,O) and in particular under the action of G(O) ⊂ GL(n,O) and
hence µG is also G(O)-invariant. So using Theorem 3.8 we can sample from the Haar measure
on the compact matrix groups SL(n,O), SO(n,O) and Sp(n,O). For small values of n, we
provide examples of this in the repository (3.2).

In general however, the measure µG (as defined in Equation (3.1) or Equation (3.8)) may
not be invariant under the action of G. In other words, the following may fail:

µG(g · A) = µG(A), for any Borel set A ⊂ G.

Note that the measure µG depends on how G is embedded in its ambient space.
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3.6.2 Moduli spaces

Another case of interest is when the algebraic manifold X is a moduli space parametrizing
certain objects. Then sampling from X, we can get an idea of how often a certain property
of these objects holds or how rare are objects of certain kind are in X. We give two examples
of such a situation.

3.6.2.1 Modular curves

Let N be a positive integer and consider the modular curve X1(N). This is a smooth
projective curve defined over Q, and it has the following moduli interpretation: for any field
K with characteristic 0, noncuspidal7 K-points of X1(N) classify isomorphism classes of
pairs (E,P ), where E is an elliptic curve over K and P is a point of E(K) of order N . For
the theory of modular curves, see [42]. See also [152, Section C.13] for a quick introduction.

In this example, we will sample uniformly from Z31-points of X1(30), and compute the
Tamagawa numbers of the corresponding elliptic curves over Q31. For an elliptic curve E/Qp,
the finite index

cp = [E(Qp) : E0(Qp)]

is referred to as the Tamagawa number of E/Qp, where E0(Qp) is the subgroup of E(Qp)
consisting of points that have good reduction. Clearly, if E/Qp has good reduction, then cp
equals 1. We note that Tamagawa numbers of elliptic curves are important local arithmetic
invariants. They arise in the conjecture of Birch and Swinnerton-Dyer, for example; see [152,
Section C.16]. Moreover, they can be easily computed using Magma [20].

The following (optimized) equation for X1(30) was provided by Sutherland in [158]:

X1(30) : y6 + (x6 − 5x5 + 6x4 + 3x3 − 6x2 + 7x+ 3)y5

+ (x7 − 3x6 − 13x5 + 44x4 − 18x3 + x2 + 18x+ 3)y4

+ (x8 − 3x7 − 13x6 + 27x5 + 46x4 − 32x3 + 21x2 + 15x+ 1)y3

+ 2x(x7 − 8x6 + 9x5 + 20x4 + 6x3 − 6x2 + 9x+ 2)y2

− 4x2(2x5 − 7x4 − 3x3 − 1)y + 8x6 = 0.

Moreover, if (x0, y0) is a noncuspidal point on X1(30), then the corresponding elliptic curve
is of the form

y2 = x3 + (t2 − 2qt− 2)x2 − (t2 − 1)(qt+ 1)2x,

where

q = y0 + 1,

t = 4(y0 + 1)(x0 + y0)/(x0y
3
0 − 4x0y0 − 4x0 − 3y30 − 6y20 − 4y0).

7Modular curves have only finitely many cuspidal points. This will be important for what follows.
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See the table in https://math.mit.edu/~drew/X1_optcurves.html. Table 3.1 presents
the Tamagawa numbers of elliptic curves obtained for a sample of 500.000 Z31-points on
X1(30), and the number of times they occurred.

c31 c31 c31

1 266775 8 1 20 382

2 53317 9 48 24 2

3 56726 10 13174 30 6549

4 1601 12 1804 45 16

5 27759 15 12956 60 192

6 58623 18 68 90 7

Table 3.1: The Tamagawa numbers and their multiplicities that appeared in our sampling.

3.6.2.2 Hilbert modular surfaces

Here, we will work with Hilbert modular surfaces Y−(D), with the notation in [56]. These
surfaces parametrize abelian surfaces with real multiplication. More precisely, let d > 1 be
a squarefree integer, and set

D =

{
d if d ≡ 1 mod 4,

4d if d ≡ 2, 3 mod 4.

Note that D is nothing but the discriminant of the ring of integers OD of the real quadratic
field Q(

√
D). Such a number is called a positive fundamental discriminant. The quotient

PSL2(OD) \
(
H+ ×H−

)
is the coarse moduli space of principally polarized abelian surfaces with real multiplication
by OD. Here, H+ (resp. H−) denotes the complex upper (resp. lower) half plane. There is a
holomorphic map from this quotient to the moduli space A2 of principally polarized abelian
surfaces. The image is the Humbert surface HD, and the Hilbert modular surface Y−(D) is
a double cover of HD branched along a finite union of modular curves. For the theory of
Hilbert modular surfaces, see, for example, [77, 24].

The surfaces Y−(D) have models over Q, and points on these surfaces correspond, gener-
ically, to Jacobians of smooth projective curves8 of genus 2. Explicit equations for birational
models of Y−(D), as well as the Igusa–Clebsch invariants I2, I4, I6 and I10 of the corresponding
genus-2 curves, were provided by Elkies and Kumar in [56] for all fundamental discriminants
D between 1 and 100. In this final example, we will

8Recall that a principally polarized abelian surface over an algebrically closed field is either the Jacobian
variety of a smooth projective curve of genus 2 or the product of two elliptic curves.

https://math.mit.edu/~drew/X1_optcurves.html
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• sample uniformly from Z5-points of Y−(5), and

• compute the minimal skeleta of the Berkovich analytifications of the corresponding
genus-2 curves.

It is well know that there are precisely 7 different (graph-theoretical) types, which are de-
picted in Figure 3.2. The recent work of Helminck [89] shows that tropical Igusa invariants,
which can easily be computed from Igusa–Clebsch invariants, distinguish between the differ-
ent types; see [89, Theorem 2.11]. See also Chapter 7 for a similar result concerning Picard
curves.

2

Type I

1

Type II Type III Type IV

1 1

Type V

1

Type VI Type VII

Figure 3.2: Minimal skeleta of the Berkovich analytifications of genus-2 curves.

A birational model of the surface Y−(5) is given by

z2 = 2
(
6250h2 − 4500g2h− 1350gh− 108h− 972g5 − 324g4 − 27g3

)
,

see [56, Theorem 16]. Moreover, the map from from H5 to A2 (or, more precisely, to the
moduli space M2 of curves of genus 2) is given by

(I2 : I4 : I6 : I10) =
(
6(4g + 1), 9g2, 9(4h+ 9g3 + 2g2), 4h2

)
see [56, Corollary 15]. Table 3.2 shows how many times the types occurred for a sample of
500000 Z5-points on Y−(5).

Type I Type II Type III Type IV Type V Type VI Type VII

414900 0 40338 23040 21688 2 32

Table 3.2: The multiplicities of the types that appeared in our sampling.

As shown the in table, Types II, VI and VII are quite rare. In fact, we never see Type II,
and it is unclear to the authors if there is a theoretical reason behind this.
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3.7 Conclusion

In conclusion, this chapter presents a method to sample from p-adic algebraic manifolds
which is based on slicing with random linear spaces; a technique that has been previously
used for real algebraic manifolds. This makes it possible to use probabilistic methods to
estimate certain geometric or number theoretic quantities.
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Chapter 4

The Bernoulli clock

This chapter is based on joint work [53] with Jim Pitman.

4.1 Introduction

The Bernoulli polynomials (Bn(x))n≥0 are a special sequence of univariate polynomials
with rational coefficients. They are named after the Swiss mathematician Jakob Bernoulli
(1654–1705), who (in his Ars Conjectandi published posthumously in Basel 1713) found the
sum of mth powers of the first n positive integers using the instance x = 1 of the power sum
formula

n−1∑
k=0

(x+ k)m =
Bm+1(x+ n)−Bm+1(x)

m+ 1
, (n = 1, 2, . . . ,m = 0, 1, 2, . . .). (4.1)

The evaluations Bm := Bm(0) and Bm(1) = (−1)mBm are known as the Bernoulli numbers,
from which the polynomials are recovered as

Bn(x) =
n∑

k=0

(
n

k

)
Bn−k x

k. (4.2)

These polynomials have been well studied, starting from the early work of Faulhaber,
Bernoulli, Seki and Euler in the 17th and early 18th centuries. They can be defined in
multiple ways. For example, Euler defined the Bernoulli polynomials by their exponential
generating function

B(x, λ) :=
λeλx

eλ − 1
=
∞∑
n=0

Bn(x)

n!
λn (|λ| < 2π). (4.3)

Beyond evaluating power sums, the Bernoulli numbers and polynomials are useful in
other contexts and appear in many areas in mathematics, among which we mention number
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theory [10, 13, 121, 4], Lie theory [21, 139, 25, 117], algebraic geometry and topology [90,
124] and probability [111, 112, 93, 92, 157, 132, 17].

The factorially normalized Bernoulli polynomials bn(x) := Bn(x)/n! can also be defined
inductively as follows (see [125, §9.5]). Beginning with b0(x) = B0(x) = 1, for each positive
integer n, the function x 7→ bn(x) is the unique antiderivative of x 7→ bn−1(x) that integrates
to 0 over [0, 1]:

b0(x) = 1,
d

dx
bn(x) = bn−1(x) and

∫ 1

0

bn(x) = 0 (n > 0). (4.4)

So the first few polynomials bn(x) are

b0(x) = 1, b1(x) = x− 1/2,

b2(x) =
1

2!
(x2 − x− 1/6), b3(x) =

1

3!
(x3 − 3x2/2 + x/2).

As shown in [125, Theorem 9.7] starting from (4.4), the functions f(x) = bn(x) with argument
x ∈ [0, 1) are also characterized by the simple form of their Fourier transform

f̂(k) :=

∫ 1

0

f(x)e−2πikxdx (k ∈ Z) (4.5)

which is given by

b̂0(k) = 1[k = 0], for k ∈ Z;

b̂n(0) = 0 and b̂n(k) = − 1

(2πik)n
, for n > 0 and k ̸= 0,

(4.6)

with the notation 1[· · · ] equal to 1 if [· · · ] holds and 0 otherwise. It follows from the Fourier
expansion of bn(x):

bn(x) = − 2

(2π)n

∞∑
k=1

1

kn
cos
(

2kπx− nπ

2

)
that there exists a constant C > 0 such that

sup
0≤x≤1

∣∣∣(2π)nbn(x) + 2 cos
(

2πx− nπ

2

)∣∣∣ ≤ C2−n for n ≥ 2, (4.7)

see [108]. So as n tends to ∞ the polynomials bn(x) looks like shifted cosine functions.
Besides (4.3) and (4.4), several other characterizations of the Bernoulli polynomials are
described in [107, 35].

This chapter draws attention to an explicit construction of the Bernoulli polynomials by
circular convolution. For a pair of functions f = f(u) and g = g(u), defined for u in [0, 1)
identified with the circle group T := R/Z = [0, 1), with f and g integrable with respect to
Lebesgue measure on T, their circular convolution f � g is the function

(f � g)(u) =

∫
T
f(v)g(u− v)dv for u ∈ T. (4.8)
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Here u− v is evaluated in the circle group T, that is modulo 1, and dv is the shift-invariant
Lebesgue measure on T with total measure 1. Iteration of this operation defines the nth
convolution power u 7→ f�n(u) for each positive integer n, each integrable f , and u ∈ T.

Theorem 4.1. The factorially normalized Bernoulli polynomials bn(x) = Bn(x)
n!

are charac-
terized by:

(i) b0(x) = 1 and b1(x) = x− 1/2,

(ii) for n > 0 the n-fold circular convolution of b1(x) with itself is (−1)n−1bn(x); that is

bn(x) = (−1)n−1b�n
1 (x). (4.9)

In view of the well known expression of circular convolution as multiplication of Fourier

transforms f̂ � g = f̂ ĝ, Theorem 4.1 follows from the classical Fourier evaluation (4.6) and
uniqueness of the Fourier transform. A more elementary proof of Theorem 4.1, without
Fourier transforms, is provided in Section 4.2. So the Fourier evaluation (4.6) may be
regarded as a corollary of Theorem 4.1. That theorem can also be reformulated as follows:

Corollary 4.2. The following identities hold for circular convolution of factorially normal-
ized Bernoulli polynomials:

b0 � b0 = b0,

b0 � bn = 0 (n ≥ 1),

bn � bm = −bn+m (n,m ≥ 1).

In particular, for positive integers n and m, this evaluation of (bn � bm)(1) yields an
identity which appears in [130, p. 31]:

(−1)m
∫ 1

0

bn(u)bm(u)du =

∫ 1

0

bn(u)bm(1− u)du = −bn+m(1). (4.10)

Here the first equality is due to the well known reflection symmetry of the Bernoulli polyno-
mials

(−1)mbm(u) = bm(1− u) (m ≥ 0) (4.11)

which is the equality of the coefficients of λm in the elementary identity of Eulerian generating
functions

B(u,−λ) =
(−λ)e−λu

e−λ − 1
=
λeλ(1−u)

eλ − 1
= B(1− u, λ). (4.12)

The rest of this chapter is organized as follows. Section 4.2 gives an elementary proof for
Theorem 4.1, and discusses circular convolution of polynomials. In Section 4.3 we highlight
the fact that 1 − 2nbn(x) is the probability density at x ∈ (0, 1) of the fractional part of a



CHAPTER 4. THE BERNOULLI CLOCK 71

sum of n independent random variables, each with the beta(1, 2) probability density 2(1−x)
at x ∈ (0, 1). Because the minimum of two independent uniform [0, 1] variables has this
beta(1, 2) probability density, the circular convolution of n independent beta(1, 2) variables
is closely related to a continuous model we call the Bernoulli clock : Spray the circle T = [0, 1)
of circumference 1 with 2n i.i.d uniform positions U1, U

′
1, . . . , Un, U

′
n with order statistics

U1:2n < · · · < U2n:2n.

Starting from the origin 0, move clockwise to the first of position of the pair (U1, U
′
1), continue

clockwise to the first position of the pair (U2, U
′
2), and so on, continuing clockwise around

the circle until the first of the two positions (Un, U
′
n) is encountered at a random index

1 ≤ In ≤ 2n (i.e. we stop at UIn:2n) after having made a random number 0 ≤ Dn ≤ n − 1
turns around the circle. Then for each positive integer n, the event (In = 1) has probability

P(In = 1) =
1− 2nbn(0)

2n

where n!bn(0) = Bn(0) is the nth Bernoulli number. For 1 ≤ k ≤ 2n, the difference

δk:2n :=
1

2n
− P(In = k)

is a polynomial function of k, which is closely related to bn(x). In particular, this difference
has the surprising symmetry

δ2n+1−k:2n = (−1)nδk:2n, for 1 ≤ k ≤ 2n

which is a combinatorial analog of the reflection symmetry (4.11) for the Bernoulli polyno-
mials.

Stripping down the clock model, the random variables In and Dn are two statistics of
permutations of the multiset

12 · · ·n2 := {1, 1, 2, 2, . . . , n, n}. (4.13)

Section 4.4 discusses the combinatorics behind the distributions of In and Dn. In Section 4.5
we generalize the Bernoulli clock model to offer a new perspective on the work of Horton
and Kurn [91] and the more recent work of Clifton et al [33]. In particular, we provide
a probabilistic interpretation for the permutation counting problem in [91] and explicitly
compute the mean function on [0, 1] of a renewal process with i.i.d. beta(1,m)-jumps. The
expression of this mean function is given in terms of the complex roots of the exponential
polynomial Em(x) := 1 + x/1! + · · · + xm/m!, and its derivatives at 0 are precisely the
moments of these roots, as studied in [168].

The circular convolution identities for Bernoulli polynomials are closely related to the
decomposition of a real valued random variable X into its integer part ⌊X⌋ ∈ Z and its
fractional part X◦ ∈ T := R/Z = [0, 1):

X = ⌊X⌋+X◦. (4.14)
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If γ1 is a random variable with standard exponential distribution, then for each positive real
λ we have the expansion

d

du
P((γ1/λ)◦ ≤ u) =

λe−λu

1− e−λ
= B(u,−λ) =

∑
n≥0

bn(u)(−λ)n. (4.15)

Here the first two equalities hold for all real λ ̸= 0 and u ∈ [0, 1), but the final equality holds
with a convergent power series only for 0 < |λ| < 2π. Section 4.6 presents a generalization of
formula (4.15) with the standard exponential variable γ1 replaced by the gamma distributed
sum γr of r independent copies of γ1, for a positive integer r. This provides an elementary
probabilistic interpretation and proof of a formula due Erdélyi et al. [59, Section 1.11, page
30] relating the Hurwitz-Lerch zeta function

Φ(z, s, u) =
∑
m≥0

zm

(u+m)s
(4.16)

to Bernoulli polynomials.

4.2 Circular convolution of polynomials

Theorem 4.1 follows easily by induction on n from the characterization (4.4) of the
Bernoulli polynomials, and the action of circular convolution by the function

− b1(u) = 1/2− u, (4.17)

as described by the following lemma.

Lemma 4.3. For each Riemann integrable function f with domain [0, 1), the circular con-
volution h = f � (−b1) is continuous on T, implying h(0) = h(1−). Moreover,∫ 1

0

h(u)du = 0 (4.18)

and at each u ∈ (0, 1) at which f is continuous, h is differentiable with

d

du
h(u) = f(u)−

∫ 1

0

f(v)dv. (4.19)

In particular, if f is bounded and continuous on (0, 1), then h = f � (−b1) is the unique
continuous function h on T subject to (4.18) with derivative (4.19) at every u ∈ (0, 1).

Proof. According to the definition of circular convolution (4.8),

(f � g)(u) =

∫ u

0

f(v)g(u− v)dv +

∫ 1

u

f(v)g(1 + u− v)dv.
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In particular, for g(u) = −b1(u), and a generic integrable function f ,

(f � (−b1))(u) =

∫ u

0

f(v)(v − u+ 1/2)dv +

∫ 1

u

f(v)(v − u− 1/2)dv

=
1

2

[∫ u

0

f(v)dv −
∫ 1

u

f(v)dv

]
− u

∫ 1

0

f(v)dv +

∫ 1

0

vf(v)dv.

Differentiate this identity with respect to u to see that h := f � (−b1) has the derivative
displayed in (4.19) at every u ∈ (0, 1) at which f is continuous, by the fundamental theorem
of calculus. Also, this identity shows h is continuous on (0, 1) with h(0) = h(0+) = h(1−),
hence h is continous with respect to the topology of the circle T. This h has integral 0 by
associativity of circular convolution: h� 1 = f � (−b1) � 1 = f � 0 = 0. Assuming further
that f is bounded and continuous on (0, 1), the uniqueness of h is obvious.

The reformulation of Theorem 4.1 in Corollary 4.2 displays how simple it is to con-
volve Bernoulli polynomials on the circle. On the other hand, convolving monomials is less
pleasant, as the following calculations show.

Lemma 4.4. For real parameters n > 0 and m > −1,

xm � xn = xn � xm =
n

m+ 1
xn−1 � xm+1 +

xn − xm+1

m+ 1
. (4.20)

Proof. Integrate by parts to obtain

xn � xm =

∫ x

0

un(x− u)mdu+

∫ 1

x

un(1 + x− u)mdu

=
n

m+ 1

∫ x

0

un−1(x− u)m+1du+
n

m+ 1

∫ 1

x

un−1(1 + x− u)mdu+
xn − xm+1

m+ 1

and hence (4.20).

Proposition 4.5 (Convolving monomials). For each positive integer n

1 � xn = xn � 1 =
1

n+ 1
, (4.21)

and for all positive integers m and n

xm � xn = xn � xm =
n! m!

(n+m+ 1)!
+

n−1∑
k=0

n!

(n− k)!(m+ 1)k+1

(xn−k − xm+k+1) (4.22)

and with the Pochhammer notation (m+ 1)k+1 := (m+ 1) . . . (m+ k + 1). In particular

x� xn =
x− xn+1

n+ 1
+

1

(n+ 1)(n+ 2)
.
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Proof. By induction, using Lemma 4.4.

Remark 4.6. 1. By inspection of (4.22) the polynomial
(
xn � xm − n! m!

(n+m+1)!

)
/x is an

anti-reciprocal polynomial with rational coefficients.

2. Theorem 4.1 can be proved by inductive application of Proposition 4.5 to the expansion
of the Bernoulli polynomials Bn(x) in the monomial basis. This argument is unnec-
essarily complicated, but boils down to the two following identities for the Bernoulli
numbers Bn := Bn(0) for n ≥ 1:

Bn =
−1

n+ 1

n−1∑
k=0

(
n+ 1

k

)
Bk (4.23)

Bn+1

(n+ 1)!
=

n∑
k=0

1

(k + 2)k!

Bn−k

(n− k)!
(4.24)

The identity (4.23) is a commonly used recursion for the Bernoulli numbers. We do
not know any reference for (4.24), but this can be checked by manipulation of Euler’s
generating function (4.3).

3. Using the hypergeometric function F := 2F 1, it follows from Equation (4.22) that:

xn � xm =
n!m!

(m+ n+ 1)!
xm+n+1 +

xn

m+ 1
F

(
1,−n;m+ 2;

−1

x

)
− xm+1

m+ 1
F (1,−n;m+ 2;−x).

4.3 Probabilistic interpretation

For positive real numbers a, b > 0, recall that the beta(a, b) probability distribution, has
density

Γ(a)Γ(b)

Γ(a+ b)
xa−1(1− x)b−1, (0 ≤ x ≤ 1)

with respect the the Lebesgue measure on R, where Γ denotes Euler’s gamma function.
The following Corollary 4.7 offers a probabilistic interpretations of Theorem 4.1 in terms of
summing i.i.d beta(1, 2)-distributed random variables on the circle.

Corollary 4.7. The probability density of the sum of n independent beta(1, 2) random vari-
ables in the circle T = R/Z is

(1− 2b1)
�n(u) = 1− 2nbn(u), for u ∈ T = [0, 1).

Proof. Follows from Corollary 4.2.
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Recall that a beta(1, 2) random variable can be constructed as the minimum of two
independent uniform random variables in [0, 1]. Let U1, U

′
1, . . . , Un, U

′
n be a sequence of 2n

i.i.d random random variables with uniform distribution on T = [0, 1). We think of these
variables as random positions around a circle of circumference 1. On the event of probability
one that the Ui and U ′i are all distinct, we define the following variables:

1. U1:2n < U2:2n < · · · < U2n:2n the order statistics of U1, U
′
1, . . . , Un, U

′
n,

2. X1 := min(U1, U
′
1)

3. for 2 ≤ k ≤ n, the variable Xk is the spacing around the circle from Xk−1 to whichever
of Uk, U

′
k is encountered first moving cyclically around T from Xk−1,

4. Ik is the random index in {1, . . . , 2n} such that Xk = UIk:2n.

5. Dn ∈ {0, . . . , n− 1} is the random number of full rotations around T to find Xn. This
is also the number of descents in the sequence (I1, I2, . . . , In); that is

Dn =
n−1∑
i=1

1[Ii > Ii+1]. (4.25)

We refer to this construction as the Bernoulli clock. Figure 4.1 depicts an instance of the
Bernoulli clock for n = 4.

Example 4.8. In Figure 4.1, the clock is a circle of circumference 1. Inside the circle, the
numbers 1, 2, . . . , 8 index the order statistics of 8 uniformly distributed random points on
the circle. The corresponding numbers outside the circle are a random assignment of labels
from the multiset of four pairs 12223242. The four successive arrows delimit segments of
T ≡ [0, 1) whose lengths X1, X2, X3, X4 are independent beta(1, 2) random variables, while
(I1, I2, I3, I4) is the sequence of indices inside circle, at the end points of these four arrows.
In this example, (I1, I2, I3, I4) = (1, 4, 6, 3), and the number of turns around the circle is
D4 = 1.

Proposition 4.9. With the above notation, the following hold

1. The random spacings X1, X2, . . . , Xn (defined by the Bernoulli clock above) are i.i.d
beta(1, 2) random variables.

2. The random sequence of indices (I1, I2, . . . , In) is independent of the sequence of order
statistics (U1:2n, . . . , U2n:2n).

Proof. Notice that X1 = min(U1, U
′
1) is a beta(1,2) random variable. Also, since U2, U

′
2 are

i.i.d uniform and are independent of the random position of X1 on the circle, the variable
X2 is independent from X1 and also has distribution beta(1,2). With a similar argument
we deduce that the variables X1, X2 . . . , Xn are i.i.d beta(1,2). Also, the random index In
at which the process stops depends only on the relative positions of the Ui’s and U ′i ’s. We
then deduce that In is independent of the order statistics (U1:2n < U2:2n < · · · < U2n:2n).
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Figure 4.1: An instance of the Bernoulli clock model.

4.3.1 Expanding Bernoulli polynomials in the Bernstein basis

It is well known that, for 1 ≤ k ≤ 2n, the distribution of Uk:2n is beta(k, 2n+1−k), whose
probability density relative to Lebesgue measure at u ∈ [0, 1) is the normalized Bernstein
polynomial of degree 2n− 1:

fk:2n(u) :=
(2n)!

(k − 1)!(2n− k)!
uk−1(1− u)2n−k

Proposition 4.10. For each positive integer n, the sum Sn of n independent beta(1, 2)
variables has fractional part S◦n whose probability density on (0, 1) is given by the formulas

f ◦Sn
(u) = 1− 2nbn(u) =

2n∑
k=1

pk:2n fk:2n(u), for u ∈ (0, 1). (4.26)

Here (p1:2n, . . . , p2n:2n) is the probability distribution of the random index In in the Bernoulli
clock construction:

pk:2n = P(In = k), for 1 ≤ k ≤ 2n.

Proof. The first formula for the density of S◦n is read from Corollary 4.7. Proposition 4.9
represents S◦n = UIn:2n where the index In is independent of the sequence of order statistics
(Uk:2n, 1 ≤ k ≤ 2n), hence the second formula for the same probability density on (0, 1).



CHAPTER 4. THE BERNOULLI CLOCK 77

Corollary 4.11. The factorially normalized Bernoulli polynomial of degree n admits the
expansion in Bernstein polynomials of degree 2n− 1

bn(u) =
1

2n

2n∑
k=1

δk:2n fk:2n(u) (4.27)

where δk:2n is the difference at k between the uniform probability distribution on {1, . . . , 2n}
and the distribution of In.

δk:2n =
1

2n
− pk:2n for 1 ≤ k ≤ 2n. (4.28)

Proof. Formula (4.27) is obtained from (4.26), in the first instance as an identity of continu-
ous functions of u ∈ (0, 1), then as an identity of polynomials in u, by virtue of the binomial
expansion

2n∑
k=1

1

2n
fk:2n(u) = 1.

Remark 4.12. Since bn(1− u) = (−1)nbn(u) and fk:2n(1− u) = f2n+1−k:2n(u), the identity
(4.27) implies that the difference between the distribution of In and the uniform distribution
on {1, . . . , 2n} has the symmetry

δ2n+1−k:2n = (−1)nδk:2n for 1 ≤ k ≤ 2n. (4.29)

Conjecture 4.13. We conjecture that the discrete sequence (δ1:2n, . . . , δ2n:2n) approximates
the Bernoulli polynomials bn (hence also the shifted cosine functions, see (4.7)) as n becomes
large, more precisely:

sup
1≤k≤2n

∣∣∣∣2nπnδk:2n − (2π)nbn

(
k − 1

2n− 1

)∣∣∣∣ −→ 0 as n→∞.

Figure 4.3 does suggest that the difference 2nπnδn(k)− (2π)nbn
(

k−1
2n−1

)
gets smaller uni-

formly in 1 ≤ k ≤ 2n as n grows, geometrically but rather slowly, like Cρn for a constant
C > 0 and ρ ≈ 2−1/100.

From (4.26) we see that we can expand the polynomial density 1−2nbn(u) in the Bernstein
basis of degree 2n − 1 with positive coefficients. A similar expansion can obviously be
achieved using Bernstein polynomials of degree n, with coefficients which must add to 1.
These coefficients are easily calculated for modest values of n (see (4.32)) which suggests the
following

Conjecture 4.14. For each positive integer n, the polynomial probability density 1−2nbn(u)
on [0, 1) can be expanded in the Bernstein basis of degree n with positive coefficients.

Question 4.15. More generally, what can be said about the greatest multiplier cn such that
the polynomial 1 − cnbn(x) is a linear combination of degree n Bernstein polynomials with
non-negative coefficients?
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Figure 4.2: Plots of 2nπnδn (dotted curve in blue), (2π)nbn(x) (curve in red) and their
difference (dotted curve in black) for n = 70, 75, 80, 85.
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Figure 4.3: Plots of 2nπnδk:2n − (2π)nbn
(

k−1
2n−1

)
for n = 100, 200, 300, 400, 500, 600.

4.3.2 The distributions of In and Dn

Proposition 4.16. The distribution of In in the Bernoulli clock construction is given by

P(In = k) =
1

2n
− δk:2n for 1 ≤ k ≤ 2n with (4.30)

δk:2n =
2n−1

n n!

n∑
i=0

(
k−1
i

)(
n
i

)(
2n−1

i

) Bn−i, for 1 ≤ k ≤ 2n. (4.31)
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Proof. For each positive integer N , in the Bernstein basis (fj:N)1≤j≤N of polynomials of
degree at most N − 1, it is well known that the monomial xi can be expressed as

xi =
1

N
(
N−1
i

) N∑
j=i+1

(
j − 1

i

)
fj:N(x) for 0 ≤ i < N.

Plugging this expansion into (4.2) yields the expansion of bn(x) in the Bernstein basis of
degree N − 1 for every N > n

bn(x) =
N∑
j=1

(
n∑

i=0

(
j−1
i

)(
n
i

)
n!N

(
N−1
i

)Bn−i

)
fj:N(x) (0 ≤ n < N). (4.32)

In particular, for N = 2n comparison of this formula with (4.27) yields (4.31) and hence
(4.30)

Remark 4.17. The error δk:2n is polynomial in k and the symmetry δ2n+1−j:2n = (−1)nδj:2n
is not obvious from (4.31).

Let us now derive the distribution of Dn explicitly. From the Bernoulli clock scheme,
we can construct the random variable Dn as follows. Let X1, . . . , Xn be a sequence of i.i.d
random variables and Sn := X1 + · · ·+Xn their sum in R (not in the circle T). We have

Dn = ⌊Sn⌋.

Theorem 4.18. The distribution function of Sn is given by

P(Sn ≤ x) = 2n

n∑
k=0

n−k∑
j=0

(
n

k

)(
n− k
j

)
(−1)n−k−j

(x− k)2n−j+

(2n− j)!
, for x ≥ 0,

where x+ denotes max(x, 0) for x ∈ R.

Proof. Let φ be the Laplace transform of the Xi’s i.e.

φX(θ) := E[e−θX1 ] =

∫ +∞

0

θe−θtP(X1 ≤ t)dt.

We compute φX and we obtain

φX(θ) =
2

θ2
(
e−θ + (θ − 1)

)
.

So for n ≥ 1, the Laplace transform of Sn is then given by

φSn(θ) = (φX(θ))n = 2n

n∑
k=0

n−k∑
j=0

(
n

k

)(
n− k
j

)
(−1)n−k−j

e−kθ

θ2n−j
. (4.33)
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The transform φSn can be inverted term by term using the following identity∫ +∞

0

θe−θt
(t− k)n+

n!
dt =

e−kθ

θn
, for k ≥ 0, θ > 0 and n ≥ 0. (4.34)

We then obtain the cdf of Sn as follows:

P(Sn ≤ x) = 2n

n∑
k=0

n−k∑
j=0

(
n

k

)(
n− k
j

)
(−1)n−k−j

(x− k)2n−j+

(2n− j)!
, for x ≥ 0. (4.35)

Remark 4.19. (4.34) was known to Lagrange in the 1700s and it appears in [106, Lemme
III and Corollaire I] where he said the final words on inverting Laplace transforms of the
form (4.33):

”... mais comme cette intégration est facile par les methodes connues, nous
n’entrerons pas dans un plus grand detail là-dessus; et nous terminerons même
ici nos recherches, par lesquelles on doit voir qu’il ne reste plus de difficulté dans
la solution des questions qu’on peut proposer à ce sujet.”

Since Sn has a density, we can deduce that

P(Dn = k) = P(Sn ≤ k + 1)− P(Sn ≤ k), for 0 ≤ k ≤ n− 1.

Combined with (4.35) this gives the distribution of Dn explicitly. The following table gives
#(n; +, •) for small values of n and d.

n
d

0 1 2 3 4 5

1 1
2 1 1
3 47 42 1
4 641 1659 219 1
5 11389 72572 28470 968 1
6 248749 3610485 3263402 357746 4017 1

Table 4.1: The table of #(n; +, d).

Remark 4.20. The sequence a(n) = #(n; +, 0) = 2−n(2n)! P(Dn = 0), which counts the
number of permutations of 12 · · ·n2 for which Dn = 0 (the first column in Table 4.1), can be
explicitly written using (4.35) as follows

a(n) = P(Sn ≤ 1) =
n∑

j=0

(−1)n−j
(
n

j

)
(2n)!

(2n− j)!
. (4.36)

This integer sequence appears in many other contexts (see OEIS entry A006902), among
which we mention a few:

https://oeis.org/A006902
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1. a(n) is the number of words on 12 · · ·n2 with longest complete increasing sub-sequence
of length n. We shall detail this in Section 4.5.

2. a(n) = n! Z(Sn;n, n−1, . . . , 1) where Z(Sn) is the cycle index of the symmetric group
of order n (see [153, Section 1.3]).

3. a(n) = Bn (n · 0!, (n− 1) · 1!, (n− 2)! · 2!, . . . , 1 · (n− 1)!), where Bn(x1, . . . , xn) is
the n-th complete Bell polynomial.

4.4 Combinatorics of the Bernoulli clock

There are a number of known constructions of the Bernoulli numbers Bn by permutation
enumerations. Entringer [58] showed that Euler’s presentations of the Bernoulli numbers,
as coefficients in the expansions of hyperbolic and trigonometric functions, lead to explicit
formulas for Bn by enumeration of alternating permutations. More recently, Graham and
Zang [82] gave a formula for B2n by enumerating a particular subset of the set of 2−n(2n)!
permutations of the multiset 12 · · ·n2 of n pairs.

The number of permutations of this multiset, such that for every i < n between each
pair of occurrences of i there is exactly one i + 1, is (−2)n(1 − 22n)B2n. Here we offer a
novel combinatorial expression of the Bernoulli numbers based on a different attribute of
permutations of same multiset (4.13), which arises from the the probabilistic interpretation
in Section 4.3. We call the combinatorial construction involved the the Bernoulli clock. Fix
a positive integer n ≥ 1 and for a permutation τ of the multiset (4.13),

• Let 1 ≤ I1 ≤ 2n−1 be the position of the first 1; that is I1 = min{1 ≤ k ≤ 2n : τ(k) =
1}.

• For 1 ≤ k ≤ n− 1, denote by 1 ≤ Ik+1 ≤ 2n the index of the first value k+ 1 following
Ik in the cyclic order (circling back to the beginning of necessary).

• Let 0 ≤ Dn ≤ n − 1 be the number of times we circled back to the beginning of the
multiset before obtaining the last index In.

Example 4.21. The permutation τ corresponding to Figure 4.1 is the permutation τ =
(1, 1, 4, 2, 4, 3, 3, 2). For this permutation

(I1, I2, I3, I4) = (1, 4, 6, 3) and D4 = 1.

Notice that random index In and the number of descents Dn depend only on the relative
positions of U1, U

′
1, . . . , Un, U

′
n i.e. the permutation of the multiset 12 · · ·n2. So the distribu-

tion of In and Dn can be obtained by enumerating permutations. For n ≥ 1, 1 ≤ i ≤ 2n and
0 ≤ d ≤ n− 1, let us denote by
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1. #(n; i, d) the number of permutations among the (2n)!/2n permutations of the multiset
{1, 1, . . . , n, n} that yield In = i and Dn = d,

2. #(n; i,+) the number of permutations that yield In = i,

3. #(n; +, d) the number of permutations that yield Dn = d.

For n = 2 there are 6 permutations of {1, 1, 2, 2} summarized in the following table

Permutations 1122 1212 1221 2112 2121 2211
(I2, D2) (3, 0) (2, 0) (2, 0) (4, 0) (3, 0) (1, 1)

Table 4.2: Permutations of {1, 1, 2, 2} and corresponding values of (I2, D2).

The joint distribution of I2, D2 is then given by

I2

D2 1 2 3 4 #(2; +, •)

0 0 2 2 1 5
1 1 0 0 0 1
#(2; •,+) 1 2 2 1 6

Table 4.3: The table of #(2; •, •).

Similarly for n = 3 we get

I3

D3 1 2 3 4 5 6 #(3; +, •)

0 0 0 6 12 15 14 47
1 14 13 8 4 2 1 42
2 1 0 0 0 0 0 1
#(3; •,+) 15 13 14 16 17 15 90

Table 4.4: The table of #(3; •, •).

The distribution of (In, Dn) can be obtained recursively as follows. The key observation is
that every permutation of the multi-set 1222 · · ·n2 is obtained by first choosing a permutation
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of 1222 · · · (n − 1)2, then choosing 2 places to insert the two values n, n. There are
(
2(n−1)

2

)
options for where to insert the two last values. This corresponds to the factorization

(2n)! 2−n = (2(n− 1))! 2−n+1

(
2n

2

)
.

Moreover, for x ∈ {1, . . . , 2(n− 1)} the identity of quadratic polynomials(
x+ 1

2

)
+

(
2n− x

2

)
+ x(2n− 1− x) =

(
2n

2

)
,

translates, for each integer x ∈ {1, . . . , 2(n− 1)} and each permutation σ of 12, · · · (n− 1)2,
the decomposition of the total number of ways to insert the next two values n, n according
to whether:

1. both places are to the left of x,

2. both places are to the right of x,

3. one of those places is to the left of x and the other to the right of x.

Suppose we ran the Bernoulli clock scheme on 2(n− 1) hours and obtained (In−1, Dn−1).
Inserting two new values n, n, the index In then depends only on In−1 and the places where
the two new values n are inserted relatively to In−1. So, the sequence (I1, I2, . . . ) is a time-
inhomogeneous Markov chain starting from I1 = 1 and a 2(n − 1) × 2n transition matrix
from In−1 to In given by

Pn(x→ y) = P(In = y|In−1 = x) =
Qn(x, y)(

2n
2

) , (1 ≤ x ≤ (2n− 1), 1 ≤ y ≤ 2n)

where Qn(x, y) is the number of ways to insert the two new values n in the Bernoulli clock
in such a way that the first one of them to the right of x is at place y. More explicitly, by
elementary counting, we have

Qn(x, y) =


x− y + 1, if 1 ≤ y ≤ x

2n− 1− x, if y = x+ 1

2n− y + x, if x+ 2 ≤ y ≤ 2n

So the first few transition matrices are

P2 =
Q2(
4
2

) =
1

6

(
1 2 2 1
2 1 1 2

)
, P3 =

Q3(
6
2

) =
1

15


1 4 4 3 2 1
2 1 3 4 3 2
3 2 1 2 4 3
4 3 2 1 1 4

 ,
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and P4 =
Q4(
8
2

) =
1

28


1 6 6 5 4 3 2 1
2 1 5 6 5 4 3 2
3 2 1 4 6 5 4 3
4 3 2 1 3 6 5 4
5 4 3 2 1 2 6 5
6 5 4 3 2 1 1 6

 ,

see Table 4.5 for a detailed combinatorial construction of Q3. This discussion is summarized
by the following proposition.

Proposition 4.22. For a uniform random permutation of 12 · · ·n2 the probability distribu-
tion of In, treated as a 1 × 2n row vector pn = (p1:2n, . . . , p2n:2n), is determined recursively
by the matrix forward equations

pn+1 = pn Pn+1 for n = 1, 2, . . . starting from p1 = (1, 0). (4.37)

So the first few of these distributions of In are as follows:

p1 = (1, 0), p2 =
1

6
(1, 2, 2, 1),

p3 =
1

90
(15, 13, 14, 16, 17, 15), p4 =

1

2520
(322, 322, 312, 304, 304, 312, 322, 322).

As n become bigger, the distribution pn gets closer to the uniform on {1, . . . , 2n}. The error
δn(k) = 1/(2n)− pk:2n is polynomial in k and satisfies the same forward equation as pn i.e.

δn+1 = δn Pn+1 for n = 1, 2, . . . starting from δ0 = (1/2,−1/2). (4.38)

The sequence δn is also closely tied to the polynomial bn(x) as (4.27) shows.

Example 4.23. : The top 1 × 6 row of Table 4.5 displays the column index of places in
rows of the main 15× 6 table below it. The 15 rows of the main table list all

(
6
2

)
= 15 pairs

of places, represented as two dots •, in which two new values 3, 3 can be inserted relative to
4 possible places of I2 ∈ {1, 2, 3, 4}. The exponents of each dot • are the values of I2 leading
to I3 being the column index of that dot in {1, 2, 3, 4, 5, 6}. For example in the second row,
representing insertions of the new value 3 in places 1 and 3 of 6 places, the dot •2,3,4 in place
1 is the place I3 found by the Bernoulli clock algorithm if I2 ∈ {2, 3, 4}. The matrix Q3 is
the 4× 6 matrix below the main table. The entry Q3(i, j) in row i and column j of Q3 is the
number of times i appears in the exponent of a dot • in the j-th column of the main table.

Remark 4.24. Notice that the matrices Qn have the remarkable symmetry

2n− 1−Qn(i, j) = Q̃n(i, j), (1 ≤ i ≤ 2n, 1 ≤ j ≤ 2n+ 2), (4.39)

with Q̃n(i, j) := Qn(2n− 1− i, 2n+ 1− j) i.e. the matrix Q̃n is the matrix Qn with entries
in reverse order in both axis.



CHAPTER 4. THE BERNOULLI CLOCK 85

1 2 3 4 5 6

•1,2,3,4 • 1 2 3 4
•2,3,4 1 •1 2 3 4
•3,4 1 2 •1,2 3 4
•4 1 2 3 •1,2,3 4
• 1 2 3 4 •1,2,3,4
1 •1,2,3,4 • 2 3 4
1 •1,3,4 2 •2 3 4
1 •1,4 2 3 •2,3 4
1 •1 2 3 4 •2,3,4
1 2 •1,2,3,4 • 3 4
1 2 •1,2,4 3 •3 4
1 2 •1,2 3 4 •3,4
1 2 3 •1,2,3,4 • 4
1 2 3 •1,2,3 4 •4
1 2 3 4 •1,2,3,4 •

1 4 4 3 2 1
2 1 3 4 3 2
3 2 1 2 4 3
4 3 2 1 1 4

Table 4.5: The combinatorial construction of the matrix Q3.

Remark 4.25. 1. It is interesting to note that, from (4.37), it is not clear what the
Bernoulli polynomials have in relation with the distribution pn or the error δn. It is
not also clear from this recursion, even with (4.39), that δn has the symmetry described
in (4.29).

2. Considering δn as a discrete analogue of bn, one can think of the equation δn+1 = δn Pn+1

as a discrete analogue of the integral formula (4.4).

3. In addition to the dynamics of the Markov chain I = (I1, I2, . . . ), we can get obtain
the joint distribution of (In, Dn) recursively in the same way. The key observation is
that at step n, having obtained In from the Bernoulli clock scheme and inserting the
two new values n + 1 in the clock, we either increment Dn by 1 to get Dn+1 if both
values are inserted prior to In or the number of laps is not incremented i.e. Dn+1 = Dn

if one of the two values is inserted after In. We then obtain the following recursion for
#(n; i, d):
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1) #(1; 1, 0) = 1

2) #(n+ 1; i, d) =
∑

1≤x<h

#(n; i, x) #n+1(x, d) +
∑

h≤x≤2n
#(n; i− 1, x) #n+1(x, d).

So one can get the joint distribution of (In, Dn) recursively with

P(In = i, Dn = d) =
#(n; i, d)

2−n(2n)!
.

4.5 Generalized Bernoulli clock

Let n ≥ 1, m1, . . . ,mn ≥ 1 be positive integers and M = m1 + · · · + mn. Let τn =
τ(m1, . . . ,mn) be a random permutation uniformly distributed among the M !/(m1! . . .mn!)
permutations of the multiset 1m12m2 . . . nmn . Let us denote by 1 ≤ I1 ≤ M the index of
the first 1 in the sequence τn. Continuing from this index I1, let I2 be the index of the first
2 we encounter (circling back if necessary) and continuing in this manner we get random
indices (I1, I2, . . . , In). Let us denote by Dn = D(m1, . . . ,mn) the number of times we circled
around the sequence τn in this process, that is the number of descents in the random sequence
(I1, I2, . . . , In), as in (4.25).

For the continuous model, mark the circle T = R/Z ∼= [0, 1) with M i.i.d uniform on

[0, 1] random variables U
(1)
1 , . . . , U

(m1)
1 , . . . , U

(1)
n , . . . , U

(mn)
n and let U1:M < · · · < UM :M

be their order statistics. Starting from 0 we walk around the clock until we encounter
the first of the variables U

(i)
1 at some random index I1. We continue from the random

index I1 until we encounter the first of the variables U
(i)
2 (circling back if necessary) and

continue like this until we encounter the first of the variables U
(i)
n . We then obtain the

random sequence (I1, I2, . . . , In) and Dn is the number of times we circled around the clock.
Finally, let us denote by (X1, . . . , Xn) the lengths (clock-wise) of the segments [UI1:M , UI2:M ],
· · · , [UIn−1:M , UIn:M ], [UIn:M , UI1:M ] on the clock. The model described in Section 4.4 is the
particular instance of this model where m1 = · · · = mn = 2.

Remark 4.26. When there is no risk of confusion, we suppress the parameters m1, · · · ,mn

to simplify the notation.

Proposition 4.27. The following hold:

1. The random lengths X1, X2, . . . , Xn are independent random variables and Xi has dis-
tribution beta(1,mi) for each 1 ≤ i ≤ n.

2. The random sequence of indices (I1, I2, . . . , In) is independent of the order statistics
(U1:M < · · · < UM :M).

Proof. Notice that X1 = min(U
(1)
1 , . . . , U

(m1)
1 ) is a beta(1,m1) random variable. Also, since

U
(1)
2 , . . . , U

(m2)
2 are i.i.d uniform and are independent of the position of X1 on the circle,
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the variables U
(i)
2 − X1 mod Z ∈ [0, 1) are still i.i.d uniform so X2 is also beta(1,m2) and

independent of X1. Running the same argument repeatedly we deduce that the variables
X1, X2 . . . , Xn are independent with Xi ∼ beta(1,mi). Also, the random index In at which

the process stops depends only on the relative positions of the variables U
(1)
1 , . . . , U

(m1)
1 , . . . ,

U
(1)
n , . . . , U

(mn)
n i.e. In is fully determined by the random permutation of {1, . . . ,M} induced

by the M i.i.d uniforms. We then deduce that In is independent of the order statistics
(U1:M < U2:M < · · · < UM :M).

The number Dn of turns around the clock can also be expressed as follows

Dn = ⌊Sn⌋, where Sn := X1 + · · ·+Xn. (4.40)

Let us denote by Ln = L(m1,m2, . . . ,mn) the length of the longest continuous increasing
subsequence of τn starting with 1; that is the largest integer 1 ≤ ℓ ≤ n such that

1, 2, 3, . . . , ℓ is a subsequence of τn.

Example 4.28. Suppose n = 4 and (m1,m2,m3,m4) = (2, 3, 2, 4) and consider the permu-
tation τn = (1, 4, 4, 1, 4,2, 4,3, 3, 2, 2). The longest increasing continuous subsequence of τn
starting from 1 (the boldfaced subsequence) has length L4 = 3 in this case.

For an infinite sequence m = (m1,m2, · · · ) of positive integers, notice that we can con-
struct the sequences of variables Ln = L(m1, . . . ,mn) , Dn = D(m1, . . . ,mn) and In =
I(m1, . . . ,mn) on a common probability space. This is done by marking an additionalmn i.i.d
uniform positions on the circle T at each step n. Notice then that (Ln = L(m1, . . . ,mn))n≥1
is an increasing sequence of random variables so we define

L∞ := lim
n→∞

Ln and Lm := E[L∞].

Proposition 4.29. We have the following:

Ln =
n∑

k=0

1[Sk ≤ 1] and L∞ =
∞∑
k=0

1[Sk ≤ 1].

In particular, we have (Ln = n) = (Dn = 0) and for n ≥ k we have

(L(m1, . . . ,mn) ≥ k) = (L(m1, . . . ,mk) = k).

Proof. The length Ln of the longest sequence of the form 1 . . . ℓ is the maximal integer ℓ
such that Sℓ ≤ 1, i.e. the maximal l such that the random walk (Sk)k≥0 does not shoot over
1. Then we deduce that indeed

Ln =
n∑

k=0

1[Sk ≤ 1].

The rest of the statements follow immediately from this equation.
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Corollary 4.30. For k ≤ n we have

P(Ln ≥ k) = P(Sk ≤ 1).

Proof. Follows immediately from Proposition 4.29.

Remark 4.31. When m1 = m2 = . . .mn = 1, the random variable Sn is the sum of n i.i.d
uniform random variables on [0, 1] and the fractional part S◦n has uniform distribution on T.
The index In has uniform distribution in {1, . . . , n} and the distribution of the number of
descents

P (Dn = k) =
An,k

n!
, (0 ≤ k ≤ n− 1)

is given by the Eulerian numbers An,k, see [153, Section 1.4].

Horton and Kurn [91, Theorem and Corollary (c)] gives a formula for the number of
permutations τ of the multiset 1m12m2 . . . nmn for which Ln = n; that is a formula for

M !

m1! · · ·mn!
P(Ln = n).

We shall interpret this formula in our context and rederive it from a probabilistic perspective.

Theorem 4.32. The number of permutations τn of the multiset 1m12m2 . . . nmn that contain
the sequence (1, 2, · · · , n) is given by

M !

m1! · · ·mn!
P(Ln = n) = (−1)M

M∑
j=0

(
M

j

)
cj
j!
, (4.41)

where

cj = (−1)n[θj]
n∏

i=1

Emi−1(−θ),

with [xn]f(x) denoting the coefficient of xn in the power series expansion of f .

Proof. Similarly to our discussion in Section 4.4, we can obtain an expression for P(Sn ≤ x)
by inverting the Laplace transform of Sn. First recall that the Laplace transform of Xi ∼
beta(1,mi) is

φXi
(θ) = E[e−θXi ] = (−1)mi

mi!

θmi

(
e−θ − Emi−1(−θ)

)
,

where Ek(x) denotes the exponential polynomial Ek(x) =
k∑

i=0

xi/i!. So the Laplace transform

of Sn is then given by

φSn(θ) =

(−1)M
n∏

i=1

mi!

θM

n∏
i=1

(
e−θ − Emi−1(−θ)

)
.
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Let us write the following product as a polynomial in two variables X and θ:

n∏
i=1

(X − Emi−1(−θ)) =
∑
k,j≥0

αk,jθ
jXk, (4.42)

so that

φSn(θ) = (−1)M

(
n∏

i=1

mi!

) ∑
k,j≥0

αk,j
e−θ

θM−j
.

Using (4.34) to invert this Laplace transform, we get

P(Sn ≤ x) = (−1)M

(
n∏

i=1

mi!

) ∑
k,j≥0

αk,j
(x− k)M−j+

(M − j)!
,

So we deduce that

P(Ln = n) = P(Sn ≤ 1) = (−1)M

(
n∏

i=1

mi!

)
M∑
j=0

cj
(M − j)!

,

where, from (4.42) we have

cj = α0,j = (−1)n[θj]

(
n∏

i=1

Emi−1(−θ)

)
.

Multiplying by M !/(m1! · · ·mn!) we get the formula in (4.41).

We suppose from now on that m := m1 = m2 = · · · ≥ 1. Let Ln,m and Lm denote the
expectation of Ln and L∞; that is

Ln,m := E[Ln] and Lm := lim
n→∞

Ln,m = E[L∞].

In [33], Clifton et al. give a fine asymptotic study of Lm as m → ∞. In this paper, we
provide a pleasant probabilistic framework in which the discussion [33] fits rather naturally.

Let (N(t), t ≥ 0) be the renewal process with beta(1,m)-distributed i.i.d jumps Xi i.e.

N(t) =
∞∑
n≥1

1[Sn ≤ t].

Notice that, by virtue of Proposition 4.29, the variable N(1) = L∞ − 1 is the number of
renewals of N in [0, 1]. Let M(t) := E[N(t)] denote the mean of N(t). By first step analysis,
M(t) satisfies the following equation for t ∈ [0, 1]:
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M(t) = P(X1 ≤ t) +m

∫ t

0

M(t− x)(1− x)m−1dx, (4.43)

= P(X1 ≤ t) +m

∫ t

0

M(x)(1− t+ x)m−1dx.

From (4.43) we can deduce that M satisfies the following differential equation

1 +
m∑
k=0

(−1)k

k!
M (k)(t) = 0. (4.44)

Theorem 4.33. Let α1, . . . , αm be the m distinct complex roots of the exponential polynomial
Em(x) =

∑m
k=0 x

k/k!. Then the mean function M(t) is given by

M(t) = −1−
m∑
k=1

α−1k e−αkt. (4.45)

Before we prove Theorem 4.33, we first recall a couple of intermediate results.

Lemma 4.34. Let z be a non-zero complex number. Then, for any positive integer n and
t ∈ [0, 1], we have the following:∫ t

0

ezx(1− x)ndx = n!
n∑

j=0

ezt(1− t)j − 1

j!
zj−n−1.

Proof. Follows immediately by induction on n and integration by parts.

The following lemma is an adaptation of [168, Theorem 7].

Lemma 4.35. Let α1, . . . , αm be the m distinct complex zeros of Em(x). Then we have the
following

m∑
k=1

α−jk =


−1, if j = 1,

0, if 2 ≤ j ≤ m,

1/m!, if j = m+ 1.

Proof of Theorem 4.33. The mean function M(t) satisfies (4.44). The latter is an order m
ODE with constant coefficients and its characteristic polynomial is Em(−x) whose roots are
−α1, . . . ,−αm. So the solution is of the form

M(t) = −1 +
m∑
k=1

βke
−αkt.
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Setting βk = −α−1k for 1 ≤ k ≤ m, it suffices to show that M(t) satisfies (4.43). To that end
notice that, thanks to Lemma 4.34, we have

P(X1 ≤ t) +m

∫ t

0

M(t− x)(1− x)m−1dx

= m

∫ t

0

(1 +M(t− x))(1− x)m−1dx

= −
m∑
k=1

mα−1k

∫ t

0

e−αk(t−x)(1− x)m−1dx

= −
m∑
k=1

mα−1k e−αkt

∫ t

0

eαkx(1− x)m−1dx

=
m∑
k=1

mα−1k e−αkt(m− 1)!
m−1∑
j=0

1− eαkt(1− t)j

j!
αj−m
k

= m!
m∑
k=1

m−1∑
j=0

e−αkt − (1− t)j

j!
αj−m−1
k .

Now notice that, thanks to Lemma 4.35, we have

m−1∑
j=0

m∑
k=1

(1− t)j

j!
αj−m−1
k =

m∑
k=1

α−m−1k =
1

m!
.

We also have

m∑
k=1

m−1∑
j=0

e−αkt

j!
αj−m−1
k =

m∑
k=1

α−m−1k e−αkt

m−1∑
j=0

αj

j!
= − 1

m!

m∑
k=1

α−1k e−αkt.

The last equation follows from the fact that αk is a zero of Em(x) =
∑m

j=0 x
j/j!. So combining

the last two equations with the previous one, we get

P(X1 ≤ t) +m

∫ t

0

M(t− x)(1− x)m−1dx = −1−
m∑
k=1

α−1k e−αkt = M(t).

Corollary 4.36 (Theorem 1.1-(a) in [33]). The expectation Lm is given by

Lm =
m∑
k=1

−α−1k e−αk .

In particular we have
L2 = e(cos(1) + sin(1)).
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Proof. Since L∞ = 1 + N(1), we deduce that Lm = 1 + M(1) and the result follows imme-
diately from Theorem 4.33.

Remark 4.37. Note that derivatives of M at 0 are the moments of the roots α1, . . . , αm i.e.

µ(j,m) :=
m∑
k=1

αj
k = (−1)jM (j+1)(0), for j ≥ 0.

The functional equation (4.43) then gives a recursion that these moments satisfy:

µ(−1,m) = 0 and µ(j,m) = (m)j+1 −
j−1∑
i=0

(m)i+1µ(j − i− 1,m), for j ≥ 0.

where (X)k = X(X − 1) · · · (X − k + 1) is the k-th falling factorial polynomial. These
moments are polynomials µ(j, ·) in m and it would be interesting to give an expression for
µ(j,X) and study its properties as suggested in [168].

4.5.1 A central limit theorem

For the rest of this section, we are interested in varying the parameter m and studying
the behaviour of the distribution of the random variable L∞ as m grows. To fix some
notation, for any integer m ≥ 1 let X

(m)
1 , X

(m)
2 , . . . be a sequence of i.i.d random variables

with beta(1,m) distribution. Let Ln,m and L∞,m denote the following random variables

Ln,m =
n∑

k=1

1
[
S
(m)
k ≤ 1

]
and L∞,m =

∞∑
k=1

1
[
S
(m)
k ≤ 1

]
,

with
S(m)
n = X

(m)
1 + · · ·+X(m)

n , for n ≥ 1.

The following corollary addresses conjectures 4.1 and 4.2 of [33].

Corollary 4.38. The following central limit theorem holds

L∞,m −m√
m

→ N (0, 1), as m ↑ ∞,

in the topology of weak convergence, where N (0, 1) denotes the normal distribution with mean
0 and variance 1.
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Proof. For m ≥ 1 and x ∈ R let u(x,m) := ⌊m+ x
√
m⌋. We then have

P
(
L∞,m −m√

m
≤ x

)
= P

(
L∞,m ≤ m+ x

√
m
)

= P (L∞,m ≤ u(x,m))

= P
(
Su(x,m)+1 > 1

)
= P

(
mSu(x,m)+1 − u(x,m)√

u(x,m)
>
m− u(x,m)√

u(x,m)

)
.

Now notice that
m− u(x,m)√

u(x,m)
→ −x as m ↑ ∞.

and, using the Lindeberg-Feller theorem (see [44, Theorem 3.4.10]) on the triangular array
(Ym,k) with

Ym,k =
1√
m

(mX
(m)
k − 1), for k and m large enough,

we obtain

mSu(x,m)+1 − u(x,m)√
u(x,m)

=

√
m

u(x,m)

(
Ym,1 + · · ·+ Ym,u(x,m)

)
→ N (0, 1) as m ↑ ∞.

So we conclude, as desired, that for any real number x ∈ R:

P
(
L∞,m −m√

m
≤ x

)
→
∫ ∞
−x

1√
2π
e−u

2/2du =

∫ x

−∞

1√
2π
e−u

2/2du, as m ↑ ∞.

Note that the hypothesis of [44, theorem 3.4.10] hold becausemX
(m)
1 converges in distribution

to an exponential distribution with parameter 1.

4.6 Wrapping probability distributions on the circle

In the decomposition (4.14) for an exponentially distributed X = γ1/λ with parameter
λ > 0; that is

P(X > t) = e−λt, for t ≥ 0,

the Eulerian generating function (4.12) is the probability density of the fractional part (γ1/λ)◦

at u ∈ [0, 1). In this probabilistic representation of Euler’s exponential generating function
(4.3), the factorially normalized Bernoulli polynomials bn(u) for n > 0 are the densities at
u ∈ [0, 1) of a sequence of signed measures on [0, 1), each with total mass 0, which when
weighted by (−λ)n and summed over n > 0 give the difference between the probability
density of (γ1/λ)◦ and the uniform probability density b0(u) ≡ 1 for u ∈ [0, 1).
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For a positive integer r and a positive real number λ, let fr,λ denote the probability
density of the gamma(r, λ) distribution:

fγr,λ(x) =
λr

Γ(r)
e−λxxr−11x>0, x ∈ R.

It is well known that fr,λ is the r-fold convolution of f1,λ on the real line i.e. fγr,λ = (fγ1,λ)∗r.
Let γr,λ be a random variable with distribution gamma(r, λ) and let us denote by γ◦r,λ the
random variable γr,λ mod Z on the circle T. The probability density of γ◦r,λ on T = [0, 1) is
given for 0 ≤ u < 1 by

f ◦γr,λ(u) =
∑
m∈Z

fγr,λ(u+m) =
λr

Γ(r)
e−λu

∞∑
m=0

(u+m)r−1e−λm (4.46)

=
λr

Γ(r)
e−λuΦ(e−λ, 1− r, u), (4.47)

where Φ is the Hurwitz-Lerch zeta function Φ(z, s, u) =
∑

m≥0
zm

(u+m)s
. In particular, for

r = 1 the probability density of γ◦1,λ, the fractional part of an exponential variable with
mean 1/λ, at u ∈ [0, 1), is

f ◦γ1,λ(u) =
λeλ(1−u)

eλ − 1
= B(1− u, λ) = 1 +

∞∑
n=1

bn(1− u)λn

where B(x, λ), evaluated here for x = 1 − u, is the generating function in (4.3). Combined
with the reflection symmetry (4.11), this shows that the probability density of γ◦1,λ can be
expanded in Bernoulli polynomials as:

f ◦γ1,λ(u) = 1 +
∞∑
n=1

(−1)nbn(u)λn (0 ≤ u < 1). (4.48)

The following proposition generalizes this result to all integers r ≥ 1.
The expansion (4.49) can be read from (4.47) and formula (11) on page 30 of [59]. The

consequent interpretation (4.50) of br(u) for r > 0, as the density of a signed measure
describing how the probability density f ◦γr,λ(u) approaches the uniform density 1 as λ ↓ 0,

dates back to the work of Nörlund [130, p. 53], who gave an entirely analytical account of
this result. See also [34] for further study of the wrapped gamma and related probability
distributions, and [43] for various identities related to (4.49).

Proposition 4.39 (Wrapped gamma distribution). For each r = 1, 2, 3, . . . the wrapped
gamma density admits the following expansion:

f ◦γr,λ(u) = 1 +
∞∑
n=r

(−1)n−r+1

(
n− 1

r − 1

)
bn(u)λn for 0 < λ < 2π (4.49)

where the convergence is uniform in u ∈ [0, 1). In particular, as λ ↓ 0

f ◦γr,λ(u) = 1− λrbr(u) +O(λr+1), uniformly in u ∈ [0, 1). (4.50)
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Proof. Since fγr,λ = (fγ1,λ)∗r we deduce that f ◦γr,λ = (f ◦γ1,λ)�r. Then, combining (4.48) and
Corollary 4.2 we deduce that

f ◦γr,λ(u) = (f ◦γ1,λ � . . .� f ◦γ1,λ︸ ︷︷ ︸
r factors

)(u)

= 1 +
∑

k1,...,kr≥1

(−1)k1+···+krλk1+···+kr(bk1 � . . .� bkr)(u)

= 1 +
∞∑
n=r

∑
k1,...,kr≥1

k1+···+kr=n

(−1)nλn(−1)−r+1bn(u)

= 1 +
∞∑
n=r

(−1)n−r+1Ar,nλ
nbn(u),

where Ar,n =
(
n−1
r−1

)
is the number of r-tuples of positive integers that sum to n. Notice that

all the sums we considered are summable uniformly in u ∈ [0, 1] since ∥bn∥∞ = O((2π)n) as
n→∞, see (4.7).

Remark 4.40. The general problem of expanding a function on T as a sum of Bernoulli
polynomials was first treated by Jordan [95, Section 85] and Mordell [126]. In our context,
we think of the expansion of a function in Bernoulli polynomials as an analog of the Taylor
expansion where we work with the convolutions � instead of the usual multiplication of
functions; i.e. we view expansions of the form

f(x) = a0(f) +
∞∑
n=1

(−1)n−1an(f)b�n
1 (x) = a0(f) +

∞∑
n=1

an(f)bn(x),

as an analogue of Taylor expansions

f(x) = f(0) +
∞∑
n=1

f (n)(0)

n!
xn.

As we have seen in this section, this point of view is especially fruitful when one wishes to
convolve probability measures on T = [0, 1). If f is a C∞ function on [0, 1] satisfying some
dominance condition (see [126, Theorem 1]), the coefficient of b�1 (x) in the expansion of f is
given by

(−1)n−1an(f) = (f (n−1)(1)− f (n−1)(0)), for n ≥ 0.

4.7 Conclusion

To conclude, this chapter underlines a property of Bernoulli polynomials in terms of
circular convolution which, surprisingly, was not recorded in the vast literature on the topic.
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There is a probabilistic and combinatorial model underlying this property for which we
coined the name Bernoulli clock. With this model in mind, this chapter offers a pleasant
probabilistic perspective to the work [91] of Horton and Kurn and the recent work of Clifton
et al. [33] on counting permutations of the mutliset 1m · · ·nm.
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Part II

Number theory, Combinatorics and
Geometry
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Chapter 5

Orders and convex sets in Bruhat-Tits
Buildings

This chapter is based joint work [52, 55] with Marvin A. Hahn, Gabriele Nebe, Mima
Stanojkovski and Bernd Sturmfels. The content of this chapter appeared (in modified form)
in the journal Beiträge zur Algebra und Geometrie (for [55]) and in the International Journal
of Number Theory (for [52]).

In this chapter, we study orders in the ring of d×d matrices Kd×d over a discretely valued
field K. We shall also discuss their action on the Bruhat-Tits building Bd(K) and describe
the set of fixed points under this action.

5.1 Introduction

Throughout this chapter, let K be a non-archimedean valued field with a surjective
discrete valuation val : K → Z ∪ {∞}, with valuation ring OK , unifomizer ϖ, and maximal
ideal mK = ϖOK . There is no need for K to be complete: in particular, K = Q with some
p-adic valuation is allowed. We refer the reader to Chapter 1 for a brief introduction to
non-archimedean valued fields. Finally, we fix a positive integer d.

An order Λ in Kd×d is a finitely generated OK-submodule of Kd×d that is also a subring
of Kd×d (that is Λ contains the identity matrix Id and is closed under matrix multiplication).
An order Λ is maximal if it is not properly contained in any other order. One example of a
maximal order is the matrix ring

Od×d
K := {X ∈ Kd×d : val(xij) ≥ 0 for all 1 ≤ i, j ≤ d}.

If Λ is an order in Kd×d and L ⊂ Kd is a lattice, we define Λ · L as follows:

Λ · L = {g · x : g ∈ Λ and x ∈ L}.

This defines an action of Λ on points of the Bruhat-Tits building Bd(K). See Section 1.2
and Section 2.5.
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Definition 5.1. Let Λ be an order in Kd×d. Then

Q(Λ) := {[L] ∈ B0
d(K) : Λ · L = L}

denotes the set of homothety classes of Λ-lattices in Kd. The order Λ is called closed if

Λ =
⋂

[L]∈Q(Λ)

EndOK
(L).

Notice that the closed orders are exactly the ones that are determined by their sets of
invariant lattices. Not all order are closed as we shall see in Section 5.3 (see Remark 5.45
for an example).

Definition 5.2. Given a finite collection Γ = {[L1], . . . , [Ls]} of lattice classes in the building
Bd(K), the Plesken-Zassenhaus order of Γ is the order defined by

PZ(Γ) =
s⋂

i=1

EndOK
(Li).

In this chapter we are interested in studying orders in Kd×d and their action on the
Bruhat-Tits building Bd(K). In particular, given an order Λ, we are interested in describing
the set of lattice classes that are invariant under the action of Λ. Conversely, given a finite
collection Γ = {[L1], . . . , [Ls]} of lattice classes in the building Bd(K), we study is associated
Plesken-Zassenhaus order PZ(Γ).

This chapter is organized as follows. In Section 5.2, we study the case where the con-
figuration Γ lies in a common apartment A of the building Bd(K). Here, the associated
order Λ = PZ(Γ) is called a graduated order following [133]. The set of fixed points in Bd
under the action of Λ is tropically convex in the apartment A, i.e. a polytrope in the tropical
torus Rd/R, see [96, Section 6.5]. Subsection 5.2.1 concerns graduated orders in Kd×d. In
Proposition 5.8 and Proposition 5.10 we present linear inequalities that characterize these
orders and the lattices they act on. These inequalities play an important role in tropical
convexity (see [96, Chapter 5]), to be explained in Subsection 5.2.2. Theorem 5.14 gives a
tropical matrix formula for the Plesken-Zassenhaus order of a collection of diagonal lattices.
In Subsection 5.2.3 we introduce polytrope regions. These are convex cones and polyhedra
whose integer points represent graduated orders. Subsection 5.2.4 is concerned with (frac-
tional) ideals in an order ΛM . These are parametrized by the ideal class polytrope QM . In
Subsection 5.2.5 we turn to Bruhat-Tits buildings and their chambers.

In Section 5.3, the second part of this chapter, we extend our study to configurations of
lattices Γ in the building Bd(K) that are given by the Minkowski sum of a polytrope (in
some apartment A) and a ball of radius r in Bd(K). We call the orders associated to such a
configuration bolytrope orders. We introduce a notion of distance in the Bruhat-Tits building
in Subsection 5.3.1. In Subsection 5.3.2 we define bolytropes and present our main tool: the
radical idealizer chain of an order in Subsection 5.3.3. Subsection 5.3.4 is dedicated to ball
orders and bolytrope orders. Finally, in Subsection 5.3.6 we discuss the case when d = 2 in
which the building is an infinite tree.
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5.2 Graduated orders

We write Kd×d for the ring of d× d matrices with entries in K. The map val is applied
coordinatewise to matrices and vectors. For example, if K = Q with p = 2, then the vector
x = (8/7, 5/12, 17) has val(x) = (3,−2, 0). In what follows, we often take X = (xij) to be a
d×d matrix with nonzero entries in K. In this case, val(X) = (val(xij)) is a matrix in Zd×d.

Fix any square matrix M = (mij) in Zd×d. This section revolves around the interplay
between the following two objects associated with M , one algebraic and the other geometric:

1. the set ΛM = {X ∈ Kd×d : val(X) ≥M}, an OK-lattice in the vector space Kd×d;

2. the set QM = {u ∈ Rd/R1 : ui − uj ≤ mij for 1 ≤ i, j ≤ d}, where 1 = (1, . . . , 1).

This interplay is strongest and most interesting when ΛM is closed under multiplication.
In this case, ΛM is a non-commutative ring of matrices. Such a ring is called an order in
Kd×d. The quotient space Rd/R1 ≃ Rd−1 is the usual setting for tropical geometry [96, 116].
Note that QM is a convex polytope in that space. It is also tropically convex, for both the
min-plus algebra and the max-plus algebra. Following [96, 161], we use the term polytrope
for QM .

Example 5.3. For d = 4, fix the matrix with diagonal entries 0 and off-diagonal entries 1:

M =


0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

 . (5.1)

The polytrope QM is the set of solutions to the 12 inequalities ui−uj ≤ 1 for i ̸= j. It is the
3-dimensional polytope shown in Figure 5.1. Namely, QM is a rhombic dodecahedron, with
14 vertices, 24 edges and 12 facets. The vertices are the images in R4/R1 of the 14 vectors in
{0, 1}4\{0,1}. Vertices ei are blue, vertices ei+ej are yellow, and vertices ei+ej +ek are red.

The order ΛM consists of all 4× 4 matrices with entries in the valuation ring OK whose
off-diagonal elements lie in the maximal ideal mK = ϖOK . We shall see in Theorem 5.20
that the blue and red vertices encode the injective modules and the projective modules of
ΛM respectively.

The connection between algebra, geometry and combinatorics we present was pioneered
by Plesken and Zassenhaus. Our primary source on their work is the book [133]. One
objective of this section is to give an exposition of their results using the framework of
tropical geometry [96, 116]. But we also present a range of new results.
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Figure 5.1: The polytrope QM on the left is a rhombic dodecahedron. The four blue vertices
and the four red vertices, highlighted on the right, will play a special role for the order ΛM .

5.2.1 Graduated orders

We begin with some standard facts found that can be found in [133]. The first is a natural
bijection between lattice classes [L] in Kd and maximal orders in Kd×d.

Proposition 5.4. Any order Λ in Kd×d is contained in the endomorphism ring of a lattice
L ⊂ Kd. The maximal orders in Kd×d are exactly the endomorphism rings of lattices L:

EndOK
(L) := {X ∈ Kd×d : XL ⊆ L}.

Two lattices L and L′ in Kd are equivalent if and only if EndOK
(L) = EndOK

(L′).

Proof. Let Λ =
⊕d2

j=1OKXj be an order in Kd×d. If we apply all the matrices Xj to the

standard lattice L0 = Od
K =

⊕d
i=1OKei, then we obtain the following lattice in Kd:

L :=
d2∑
j=1

XjL0 =
d∑

i=1

d2∑
j=1

OKXj ei.

Since Λ is closed under multiplication, we have XjL ⊆ L for all j. Therefore Λ ⊆ EndOK
(L).

Endomorphism rings of lattices are orders. Indeed, if L = gL0 for g ∈ GL(d,K), then

EndOK
(L) = g EndOK

(L0)g
−1 = g Od×d

K g−1. (5.2)

This is a ring, and it is spanned as an OK-lattice by {gEijg
−1 : 1 ≤ i, j ≤ d}. This allows to

conclude that the maximal orders are exactly the endomorphism rings of lattices.

For u ∈ Zd we abbreviate gu = diag(ϖu1 , ϖu2 , · · · , ϖud). This diagonal matrix trans-
forms the standard lattice Od

K to Lu = guOd
K . The endomorphism ring EndOK

(Lu) is the
maximal order in (5.2). Let M(u) denote the d × d matrix whose entry in position (i, j)
equals ui − uj.
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Lemma 5.5. The endomorphism ring of the lattice Lu is given by valuation inequalities:

EndOK
(Lu) = ΛM(u) = {X ∈ Kd×d : val(X) ≥M(u) }. (5.3)

Proof. The elements of EndOK
(Lu) are the matrices X = guY g

−1
u where Y ∈ Od×d

K . Writing
X = (xij) and Y = (yij), the equation X = guY g

−1
u means that xij = ϖui−ujyij for all i, j.

The condition val(yij) ≥ 0 is equivalent to val(xij) ≥ ui−uj. Taking the conjunction over all
(i, j), we conclude that val(Y ) ≥ 0 is equivalent to the desired inequality val(X) ≥M(u).

The matrices M(u) are characterized by the following two properties. All diagonal entries
are zero and the tropical rank is one, cf. [116, Section 5.3]. What happens if we replace M(u)
in (5.3) by an arbitrary matrix M ∈ Zd×d? Then we get the set ΛM from the begining of
Section 5.2.

Remark 5.6. For any matrix M ∈ Zd×d, the set ΛM is a lattice in Kd×d. It is generated
as an OK-module by the matrices ϖmijEij for 1 ≤ i, j ≤ d. The lattice ΛM may not be
an order.

Write Zd×d
0 for the set of integer matrices M with zeros on the diagonal, i.e. mii = 0 for

all i. If M lies in Zd×d
0 then ΛM contains the identity matrix, but may still not be an order.

Example 5.7. Let K = Q with the p-adic valuation, for some prime p ≥ 5. For d = 3, set

M =

0 0 1
0 0 0
0 0 0

 and X =

1 1 p
1 1 1
1 1 1

 , so X2 =

2 + p 2 + p 1 + 2p
3 3 2 + p
3 3 2 + p

 .
Since val(X) = M and val(X2) = 0, we have X ∈ ΛM but X2 ̸∈ ΛM . This means that ΛM

is not an order.

Proposition 5.8. Given M = (mij) in Zd×d
0 , the lattice ΛM is an order in Kd×d if and only

if M satisfies the following inequalities

mij +mjk ≥ mik for all 1 ≤ i, j, k ≤ d. (5.4)

Proof. To prove the if direction, we assume (5.4). Our hypothesis mii = 0 ensures that ΛM

contains the identity matrix, so ΛM has a multiplicative unit. Suppose X, Y ∈ ΛM . Then
the (i, k) entry of XY equals

∑d
j=1 xijyjk. This is a scalar in K whose valuation is at least

mij +mjk for some index j. Hence it is greater than or equal to mik since (5.4) holds.
For the only-if direction, suppose mij +mjk < mik. Then X = ϖmijEij and Y = ϖmjkEjk

are in ΛM . However, XY = ϖmij+mjkEik is not in ΛM because its entry in position (i, k) has
valuation less than mik. Hence ΛM is not multiplicatively closed, so it is not an order.

In what follows, we define graduated orders following [133] and collect some related results
from [55, 133].
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Definition 5.9. An OK-order Λ in Kd×d is called graduated if Λ contains a complete set of
orthogonal primitive idempotents ϵ1, . . . , ϵd of Kd×d.

The primitive idempotents of Kd×d are exactly the projections onto 1-dimensional sub-
spaces of Kd, so each set {ϵ1, . . . , ϵd} as in Definition 5.9 defines a frame

Kd = ϵ1K
d ⊕ . . .⊕ ϵdKd = Ke1 ⊕ . . .⊕Ked

i.e. a decomposition of Kd as a direct sum of 1-dimensional subspaces. In any frame basis
(e1, . . . , ed) the idempotents are diagonal matrices with exactly one entry 1 on the diagonal.
The projection onto the ij-matrix entry ϵiΛϵj is an OK-submodule of ϵiK

d×dϵj ∼= K. Hence,
writing matrices with respect to the frame basis (e1, . . . , ed), there exists a matrix M =
(mij) ∈ Zd×d such that the graduated order Λ is of the form

ΛM = {X = (Xij) ∈ Kd×d : Xij ∈ m
mij

K for all i, j = 1, . . . , d}.

The matrix M is called the exponent matrix of Λ.
Fix M that satisfies (5.4). The graduated order ΛM is an OK-subalgebra of Kd×d. It is

therefore natural to ask which lattices in Kd are ΛM -stable.

Proposition 5.10. A lattice L is stable under ΛM if and only if L = Lu with u ∈ Zd

satisfying
ui − uj ≤ mij for 1 ≤ i, j ≤ d. (5.5)

Moreover, if u, u′ ∈ Zd satisfy (5.5), then the diagonal lattices Lu and Lu′ are isomorphic as
ΛM -modules if and only if they are equivalent, i.e. u = u′ in the quotient space Rd/R1.

Proof. Fix a lattice L and let u = (u1, . . . , ud) be defined by ui = min{val(bi) : b ∈ L}.
Then L ⊆ Lu because every b ∈ L is an OK-linear combination of the standard basis of Lu,
namely b =

∑d
i=1 biei =

∑d
i=1(biϖ

−ui)ϖuiei. Suppose that L is ΛM -stable. Since mii = 0,
we have Eii ∈ ΛM . Hence Eii b = biei ∈ L for every b ∈ L. This implies Lu ⊆ L and
hence L = Lu. Applying ϖmijEij ∈ ΛM to ϖujej ∈ Lu, we see that ϖmij+ujei lies in Lu, and
this implies mij + uj ≥ ui. Hence (5.5) holds. Conversely, suppose that (5.5) holds. Then
the generator ϖmijEij of ΛM maps each basis vector ϖukek of Lu either to zero (if j ̸= k),
or to ϖmik+ukei ∈ Lu. This proves the first assertion.

For the second assertion, let u, u′ ∈ Zd satisfy (5.5). Since multiplication by α ∈ K∗

is an isomorphism of OK-modules, the if-direction is clear. Conversely, if Lu and Lu′ are
isomorphic, then there exists g ∈ GLd(K) such that Lu′ = gLu and gX = Xg for all X ∈ ΛM .
Pick s ∈ Z>0 such that ϖsOd×d

K ⊂ ΛM . Then g commutes with every matrix in ϖsOd×d
K .

This implies that g is central in Od×d
K , and therefore g is a multiple of the identity matrix.

Remark 5.11. For M = (mij) ∈ Zd×d
0 satisfying (5.4), the ΛM -lattices L are of the form

L =
⊕d

i=1 ϵiL and hence there exists u = (u1, . . . , ud) ∈ Zd such that

L = Lu := OKϖ
u1e1 ⊕ . . .⊕OKϖ

uded.
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The tuple u is called the exponent vector of the lattice L. Moreover, L = Lu is a ΛM -lattice
if and only if, for any choice of 1 ≤ i, j ≤ d, one has mij + uj ≥ ui and two ΛM -lattices Lu

and Lv are isomorphic if and only if u− v ∈ Z1.
In the next section we shall see that ΛM -lattices are parameterized by the integral points

of the set

QM := {[u] ∈ Rd/R1 : mij + uj ≥ ui for all i, j = 1, . . . , d}.

Following [96], the set QM is called a polytrope.

5.2.2 Bi-tropical Convexity

We now develop the relationship between graduated orders and tropical mathematics
[96, 116]. Both the min-plus algebra (R, ⊕ ,⊙) and the max-plus algebra (R, ⊕ ,⊙) will be
used. Its arithmetic operations are the minimum, maximum, and classical addition of real
numbers:

a⊕ b = min(a, b) , a⊕ b = max(a, b) , a⊙ b = a+ b for a, b ∈ R.

If M and N are real matrices, and the number of columns of M equals the number of rows of
N , then we write M ⊙N and M ⊙N for their respective matrix products in these algebras.

Example 5.12. Consider the 2× 2 matrices M =

[
0 1
2 0

]
and N =

[
1 0
0 0

]
. We find that

M ⊙M =

[
0 1
2 0

]
, M ⊙N =

[
1 0
0 0

]
, N ⊙M =

[
1 0
0 0

]
, N ⊙N =

[
0 0
0 0

]
,

M ⊙M =

[
3 1
2 3

]
, M ⊙N =

[
1 1
3 2

]
, N ⊙M =

[
2 2
2 1

]
, N ⊙N =

[
2 1
1 0

]
.

There are two flavors of tropical convexity [116, Section 5.2]. A subset of Rd is min-convex
if it is closed under linear combinations in the min-plus algebra, and max-convex if the same
holds for the max-plus algebra. Thus convex sets are images of matrices under linear maps.

We are especially interested in bi-tropical convexity in the ambient space Rd/R1. This
is ubiquitous in [96, Section 5.4] and [116]. Joswig [96, Section 1.4] calls it the tropical
projective torus. At a later stage, we also work in the corresponding matrix space Rd×d/R1.

Let Rd×d
0 denote the space of real d × d matrices with zeros on the diagonal, which is a

real (d2 − d)-dimensional vector space with lattice Zd×d
0 . For M = (mij) in Rd×d

0 , we define

QM =
{
u ∈ Rd/R1 : ui − uj ≤ mij for 1 ≤ i, j ≤ d

}
. (5.6)

Such a set is known as a polytrope in tropical geometry [97, 116]. Other communities use the
terms alcoved polytope and weighted digraph polytope. We note that QM is both min-convex
and max-convex [96, Proposition 5.30] and, being a polytope, it is also classically convex.
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Using tropical arithmetic, the linear inequalities in (5.4) can be written concisely as
follows:

M ⊙M = M. (5.7)

Thus, M is min-plus idempotent. This holds for M in Example 5.12. Joswig’s book [96,
Section 3.3] uses the term Kleene star for matrices M ∈ Rd×d

0 with (5.7). Propositions 5.8
and 5.10 imply:

Corollary 5.13. The lattice ΛM is an order in Kd×d if and only if (5.7) holds. In this case,
the integer points u in the polytrope QM are in bijection with the isomorphism classes of
ΛM -lattices Lu. Here, by a ΛM -lattice we mean a ΛM -module that is also a lattice in Kd.

Let Γ = {L1, . . . , Ln} be a finite set of lattices in Kd, which might be taken up to
equivalence. The intersection of two orders in Kd×d is again an order. Hence the intersection

PZ(Γ) = EndOK
(L1) ∩ · · · ∩ EndOK

(Ln) (5.8)

is an order in Kd×d. We call PZ(Γ) the Plesken-Zassenhaus order of the configuration Γ.
In the following we assume that each Li is a diagonal lattice, i.e. Li = Lu(i) for u(i) ∈ Zd.

Our next result involves a curious mix of max-plus algebra and min-plus algebra.

Theorem 5.14. Let Γ = {Lu(1) , . . . , Lu(n)} be any configuration of diagonal lattices in Kd.
Then its Plesken-Zassenhaus order PZ(Γ) coincides with the graduated order ΛM where

M = M(u(1)) ⊕ M(u(2)) ⊕ · · · ⊕ M(u(n)). (5.9)

This max-plus sum of tropical rank one matrices is min-plus idempotent, i.e. (5.4) and
(5.7) hold.

Proof. We regard Γ as a configuration in Rd/R1. By construction, M is the entrywise
smallest matrix such that Γ is contained in the polytrope QM . From [96, Lemma 3.25]
the matrix M is a Kleene star, that is (5.4) and (5.7) hold. The intersection in (5.8) is
defined by the conjunction of the n inequalities val(X) ≥ M(u(i)), which is equivalent to
val(X) ≥M .

Example 5.15. For d = n = 3, fix u(1) = (−2,−1, 0), u(2) = (2, 1, 0), u(3) = (−1, 3, 0) in
R3/R1. The configuration Γ = {u(1), u(2), u(3)} consists of the three red points in Figure 5.2.
The red diagram is their min-plus convex hull. This tropical triangle consists of a classical
triangle together with three red line segments connected to Γ. This red min-plus triangle
is not convex. The green shaded hexagon is the polytrope spanned by Γ. By [96, Remark
5.33], this is the geodesic convex hull of Γ. It equals QM where M is computed by (5.9) as
follows:

M = (u(1))t ⊙ (−u(1)) ⊕ (u(2))t ⊙ (−u(2)) ⊕ (u(3))t ⊙ (−u(3)) =

0 1 2
4 0 3
2 1 0

 .
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u(1)

u(2)

u(3)

(2, 3, 0)

(0,−1, 0)

(−2, 2, 0)

Figure 5.2: A polytrope with three min-plus vertices (blue) and three max-plus vertices
(red).

The polytrope QM is both a min-plus triangle and a max-plus triangle. Its min-plus vertices,
shown in blue, are equal in R3/R1 to the columns of M . Its max-plus vertices, shown in red,
are the points u(i). These are equal in R3/R1 to the columns of −M t. See Theorem 5.20.

Remark 5.16. All lattices Lu for u ∈ QM are indecomposable as ΛM -modules, cf. [133].
This is no longer true if R is enlarged to the tropical numbers R ∪ {∞}. The combinatorial
theory of polytropes in [96] is set up for this extension, and it indeed makes sense to study
orders ΛM with mij =∞. While we do not pursue this here, our approach would extend to
that setting.

Example 5.17. Set d = 4. The rhombic dodecahedron in Example 5.3 was called the
pyrope in [97, Figure 4]. This QM is a tropical tetrahedron for both min-convexity and
max-convexity. The respective vertices are shown in red and blue in Figure 5.1. We have
ΛM = PZ(Γ) where Γ is either set of four vertices. The ΛM -lattices Lu correspond to the 15
integer points in QM .

5.2.3 Polytrope Regions

We next introduce a cone that parametrizes all graduated orders ΛM . Following Tran
[161], the polytrope region Pd is the set of all min-plus idempotent matrices M ∈ Rd×d

0 . Thus,
Pd is the (d2 − d)-dimensional convex polyhedral cone defined by the linear inequalities in
(5.4). The equations mik = mij + mjk define the cycle space of the complete bidirected
graph Kd. This is the lineality space of Pd. Modulo this (d − 1)-dimensional space, the
polytrope region Pd is a pointed cone of dimension (d − 1)2. We view it as a polytope of
dimension d2−2d. Each inequality mik ≤ mij +mjk is facet-defining, so the number of facets
of Pd is d(d− 1)(d− 2).

It is interesting but difficult to list the vertices of Pd and to explore the face lattice.
The same problem was studied in [12] for the metric cone, which is the restriction of Pd to
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the subspace of symmetric matrices in Rd×d
0 . A website maintained by Antoine Deza [38]

reports that the number of rays of the metric cone equals 3, 7, 25, 296, 55226, 119269588 for
d = 3, 4, 5, 6, 7, 8. We here initiate the census for the polytrope region. The following tables
report the size of the orbit, the number of incident facets, and a representative matrix [mij].
Here orbit and representatives refer to the natural action of the symmetric group Sd on Pd.
The matrices [mij] in Z3×3

0 are written in the vectorized format [m12m13m21m23m31m32].

Proposition 5.18. The polytope P3 is a bypramid, with f-vector (5, 9, 6). Its five vertices are

3 , 4 [001100] and 2 , 3 [001110].

The polytope P4 has the f-vector (37, 327, 1140, 1902, 1680, 808, 204, 24). Its 37 vertices are

12, 10 [111011001001] 6, 12 [111011001000] 12, 14 [011011001000]
3, 16 [011011000000] 4, 18 [111000000000].

The corresponding polytropes QM are pyramid, tetrahedron, triangle, segment, and segment.
The 15-dimensional polytope P5 has 2333 vertices in 33 symmetry classes. These classes are

5, 48 [00000000000000001111] 10, 18 [00001001211121111100] 10, 42 [00000000000011101110]
20, 15 [00002012323231012201] 20, 21 [00001000110021112111] 20, 39 [00000000000011101111]
24, 20 [00001001210122111110] 24, 30 [00001000110011101111] 30, 24 [00001000110121111110]
30, 30 [00000000110011111111] 30, 30 [00000000110111111110] 30, 36 [00000000110011001111]
40, 18 [00002000221222212212] 60, 18 [00001000210122112110] 60, 18 [00001001210122121100]
60, 22 [00001000110122111110] 60, 27 [00001000110011102111] 60, 29 [00000000110011102211]
60, 33 [00000000110011101111] 120, 16 [00001001220132122110] 120, 17 [00001001210122122110]
120, 18 [00001001210122112110] 120, 18 [00001001210122122210] 120, 18 [00001001210222122110]
120, 18 [00001001220132213210] 120, 19 [00001000210022103221] 120, 19 [00001000210122122110]
120, 19 [00001001210122212210] 120, 22 [00001000110021102221] 120, 22 [00001000110122121110]
120, 23 [00001000110021102211] 120, 23 [00001000110021102222] 120, 25 [00001000110011102211]

Proof. This was found by computations with Maple and Polymake [11].

Remark 5.19. The integer matrices M in the polytrope region Pd represent the graduated
orders ΛM ⊂ Kd×d. The data above enables us to sample from these orders.

Our next result relates the structure of a polytrope QM to that of its graduated order ΛM .

Theorem 5.20. Let M ∈ Pd be in standard form. The (d − 1)-dimensional polytrope QM

is both a min-plus simplex and a max-plus simplex. The min-plus vertices u are the columns
of M . They represent precisely those modules Lu over the order ΛM that are projective. The
max-plus vertices v are the columns of −M t, and they represent the injective ΛM -modules Lv.

Proof. Thanks to [97, Theorem 7], full-dimensional polytropes are tropical simplices, with
vertices given by the columns of the defining matrix M . We know from bi-tropical convexity
[96, Proposition 5.30] that QM is both min-convex and max-convex, so it is a simplex in
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both ways. This duality corresponds to swapping M with its negative transpose −M t. Note
its appearence in [116, Theorem 5.2.21]. The connection to projective and injective modules
appears in parts (v) and (vii) of [133, Remark II.4]. For completeness, we sketch a proof.

Recall that a module is projective if and only if it is a direct summand of a free module.
Let m(1), . . . ,m(d) denote the columns of M . The lattice associated to the j-th column equals

Lm(j) =
{
x ∈ Kd : val(xi) ≥ mij for i = 1, . . . , d

}
.

Taking the direct sum of these d lattices gives the following identification of OK-modules:

ΛM = Lm(1) ⊕ Lm(2) ⊕ · · · ⊕ Lm(d) . (5.10)

We see that Lm(j) is a direct summand of the free rank one module ΛM , so it is projective.
Conversely, let P be any indecomposable projective ΛM -module. Then P ⊕Q ∼= Λr

M for
some module Q and some r ∈ Z>0. The module Λr

M decomposes into r · d indecomposables,
found by aggregating r copies of (5.10). By the Krull-Schmidt Theorem, such decompositions
are unique up to isomorphism, and hence P is isomorphic to Lm(j) for some j.

A ΛM -module P is projective if and only if HomOK
(P,OK) is an injective ΛM -module,

but now with the action on the right. The decomposition (5.10) dualizes gracefully. We
derive the assertion for injective modules by dualizing all steps in the argument above.

Example 5.21. The columns of the matrix M in Example 5.3 are the negated unit vectors
−ei. The columns of −M t are the unit vectors ei. Our color coding in Figure 5.1 exhibits
the two structures of QM as a tropical tetrahedron in R4/R1. The four red points are the
min-plus vertices, giving the projective ΛM -modules. The four blue points are the max-plus
vertices.

Given any min-plus idempotent matrix M ∈ Pd, we define its truncated polytrope region

Pd(M) = {N ∈ Pd : N ≤M}. (5.11)

This polytope has dimension d2−d if M is in the interior of Pd. It parametrizes all subpoly-
tropes of QM , i.e. all the polytropes QN contained in QM , as the following lemma shows.

Lemma 5.22. Given matrices M in Pd and N in Rd×d
0 such that QN ⊆ QM , there exists a

matrix C in the truncated polytrope region Pd(M) such that QN = QC.

Proof. For each choice of i and j, we define cij = max{ui − uj : u ∈ QN}. The matrix
C = (cij) lives in Rd×d

0 and has the property that QN = QC . Moreover, since QN is
contained in QM , we have C ≤ M . The fact that C ⊙C = C follows from the definition of
the cij’s and (5.4). In particular, C belongs to the truncated polytrope region Pd(M).

On the algebraic side, Pd(M) parametrizes all OK-orders ΛN that contain the given order
ΛM . Here M and N are assumed to be integer matrices. In particular, the integer points u in
QM correspond to maximal orders ΛM(u) = EndOK

(Lu) that contain ΛM ; cf. Proposition 5.4.
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Example 5.23. Let M be the d × d matrix with entries 0 on the diagonal and 1 off the
diagonal. Thus QM is the pyrope [97, §3]. We consider two cases: the hexagon (d = 3) and
Example 5.3 (d = 4). The truncated polytrope region Pd(M) classifies subpolytropes of QM .

d = 3: The 6-dimensional polytope P3(M) has the f-vector (36, 132, 199, 151, 60, 12). Its 36
vertices come in ten symmetry classes. We list the corresponding 3× 3 matrices:

1, 6 [1,1,1,1,1,1] 2, 6 [1,12 ,
1
2 ,1,1,

1
2 ] 3, 8 [0,−1, 0,−1, 1, 1] 3, 8 [1, 0,−1,−1, 0, 1] 3, 8 [1,0,1,1,0,1]

3, 6 [1,1,1,1,0,0] 3, 6 [0,1,1,1,1,0] 6, 7 [0,−1, 1, 0, 1, 1] 6, 7 [1, 1, 1, 1, 0, 1] 6, 6 [0,0,1,1,1,0]

These polytropes are shown in red in Figure 5.3. Our classification into S3-orbits is finer
than that from symmetries of the hexagon QM , which leads to only eight orbits. For us, this
classification is more natural because it reflects algebraic properties of orders. It distinguishes
min-plus vertices from max-plus vertices of QM . The polytope P3(M) has 41 integer points,
so there are 41 orders containing ΛM . In addition to 34 integer vertices, there are seven
interior integer points, namely [0, 0, 0, 0, 0, 0] and six like [0, 0, 0, 0, 1, 1], not seen in Figure 5.3.

Figure 5.3: The regular hexagon has 36 extreme subpolytropes in ten symmetry classes.

d = 4: The truncated polytrope region P4(M) for (5.1) is 12-dimensional. Its f-vector is

(961, 17426, 103780, 304328, 517293, 549723, 377520, 168720, 48417, 8620, 894, 48).

The 961 vertices come in 65 orbits under the S4-action. Among the simple vertices we find:

1, 12 [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] 8, 12 [1, 1, 1, 1, 12 , 1, 1, 1,
1
2 , 1,

1
2 , 1]

4, 27 [1, 1, 1,−1, 0, 0,−1, 0, 0,−1, 0, 0] 4, 27 [−1,−1,−1, 1, 0, 0, 1, 0, 0, 1, 0, 0]

The list of all vertices, and much more, is available at

https://mathrepo.mis.mpg.de/OrdersPolytropes/index.html.

Such data sets can be useful for comprehensive computational studies of OK-orders in Kd×d.

https://mathrepo.mis.mpg.de/OrdersPolytropes/index.html
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5.2.4 Ideals

To better understand the order ΛM for M ∈ Pd, we study its (fractional) ideals. By an
ideal of ΛM we mean an additive subgroup I of ΛM such that ΛMI ⊆ I and IΛM ⊆ I. A
fractional ideal of ΛM is a (two sided) ΛM -submodule J of Kd×d such that αJ ⊂ ΛM for
some α ∈ K∗.

Example 5.24. Fix X ∈ Kd×d and consider the two-sided ΛM -module ⟨X⟩ = ΛMXΛM =
{AXB : A,B ∈ ΛM}. This is an ideal when X ∈ ΛM . If X ̸∈ ΛM then αX ∈ ΛM for some
α ∈ K∗. Hence, ⟨X⟩ is a fractional ideal. These are the principal (fractional) ideals of ΛM .

For all that follows, we assume that M ∈ Pd is an integer matrix in standard form.

Proposition 5.25. The nonzero fractional ideals of the order ΛM are the sets of the form

IN =
{
X ∈ Kd×d : val(X) ≥ N

}
, (5.12)

where N = (nij) is any matrix in Zd×d with N ⊙M = M ⊙N = N . This is equivalent to

nik ≤ nij +mjk and nik ≤ mij + njk for 1 ≤ i, j, k ≤ d. (5.13)

Proof. The result is due to Plesken who states it in (viii) from [133, Remark II.4]. The
min-plus matrix identity N ⊙M = N is equivalent to nik ≤ nij +mjk because mjj = 0.

Remark 5.26. If N has zeros on its diagonal and satisfies (5.4) then IN = ΛN is an order,
as before. However, among all lattices in Kd×d, ideals are more general than orders. In
particular, we generally have nii ̸= 0 for the matrices N in (5.12). A fractional ideal IN is an
ideal in ΛM if and only if N ≥M . If this holds then the polytrope QN is contained in QM .

Example 5.27. The Jacobson radical of the order ΛM is the ideal Jac(ΛM) = IM+Idd . Here
Idd is the identity matrix. The quotient of ΛM by its Jacobson radical is the product of
residue fields ΛM/Jac(ΛM) ∼= (OK/⟨ϖ⟩)d. See (i) in [133, Remark II.4] for more details.

Let QM denote the set of matrices N in Rd×d that satisfy the inequalities in (5.13).
These inequalities are bounds on differences of matrix entries in N . We can thus regard
QM as a polytrope in Rd×d/R1, where 1 =

∑d
i,j=1Eij. The matrices N parameterizing

the fractional ideals IN of ΛM (up to scaling) are the integer points of QM . One checks
directly that QM is closed under both addition and multiplication of matrices in the min-
plus algebra. Its product ⊙ represents the multiplication of fractional ideals as the following
proposition shows.

Proposition 5.28. If M ∈ Pd is in standard form and N,N ′ ∈ QM then ININ ′ = IN ⊙N ′.

Proof. Let X ∈ IN , Y ∈ IN ′ . The inequalities val(X) ≥ N, val(Y ) ≥ N ′ imply val(XY ) ≥
val(X)⊙ val(Y ) ≥ N ⊙N ′ and so XY ∈ IN ⊙N ′ . This gives the inclusion ININ ′ ⊆ IN ⊙N ′ .
Let uij = min

1≤k≤d
(nik + n′kj) be the (i, j) entry of N ⊙N ′. For the inclusion IN ⊙N ′ ⊆ ININ ′ , it

suffices to show that ϖuijEij is in ININ ′ for all i, j. Fix i, j and let k satisfy uij = nik + n′kj.

The matrices ϖnikEik and ϖn′
kjEkj are in IN and IN ′ . Their product ϖuijEij is in ININ ′ .
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We call QM the ideal class polytrope of M . The min-plus semigroup (QM , ⊙ ) plays the
role of the ideal class group in number theory. Its neutral element is the given matrix M .

Example 5.29. Fix M =

[
0 1
1 0

]
∈ P2. The polytrope QM is the octahedron with vertices

[
0 1
1 2

]
,

[
2 1
1 0

]
,

[
1 2
0 1

]
,

[
1 0
2 1

]
,

[
0 1
1 0

]
,

[
1 0
0 1

]
∈ Z2×2/Z1.

This octahedron contains 19 integer points N . These are in bijection with the equivalence
classes of fractional ideals IN in the order ΛM . The midpoint of QM corresponds to the
Jacobson radical IM+Id2 . The remaining 12 integer points are the midpoints of the edges.

One may ask whether the ideal class semigroup (QM , ⊙ ) is actually a group. To address
this question, we define the pseudo-inverse of a fractional ideal I in the order ΛM as follows:

(ΛM : I) = {X ∈ Kd×d : XI ⊆ ΛM and IX ⊆ ΛM}.

Lemma 5.30. The pseudo-inverse of a fractional ideal in ΛM is a fractional ideal in ΛM .

Proof. Let A ∈ ΛM and X ∈ (ΛM : I), so that XI, IX ⊆ ΛM . Since I is a fractional ideal, we
have AI ⊆ I and IA ⊆ I. From these inclusions we deduce that XAI, IXA,AXI, IAX are
all subsets of ΛM . This implies XA,AX ∈ (ΛM : I). Hence (ΛM : I) is a fractional ideal.

Proposition 5.31. Let M ∈ Pd in standard form and N ∈ QM . Then (ΛM : IN) = IN ′

where
n′ij = max

1≤ℓ≤d
( max(mℓj − nℓi,miℓ − njℓ) ) for 1 ≤ i, j ≤ d. (5.14)

Proof. By Proposition 5.25 and Lemma 5.30, there exists N ′ ∈ QM with IN ′ = (ΛM : IN).
Then IN ′IN ⊆ ΛM and ININ ′ ⊆ ΛM , and IN ′ is the largest fractional ideal with this property.
These two conditions are equivalent to ϖn′

ijEijIN ⊆ ΛM and ϖn′
ijINEij ⊆ ΛM for all i, j.

The first condition holds if and only if n′ij +njℓ ≥ miℓ for all ℓ. The second condition holds if
and only if nℓi + n′ij ≥ mℓj for all ℓ. The smallest solution N ′ = (n′ij) is given by (5.14).

Passing from ideals to their matrices, we also call N ′ the pseudo-inverse of N in QM .

Example 5.32. Let d = 2 and M as in Example 5.29. The 19 ideal classes N in QM have

only three distinct pseudo-inverses: N ′ ∈
{[

0 0
0 0

]
,
[
0 1
1 0

]
,
[
1 0
0 1

]}
. For most ideal classes N ,

we have N ⊙N ′ ̸= M and N ′⊙N ̸= M . This means that most N do not have an inverse in
(QM , ⊙ ). In particular, the ideal class polytrope QM is a semigroup but not a group.

The semigroup QM has the neutral element M and each ideal class N ∈ QM has a
pseudo-inverse N ′ given by the formula (5.14). With this data, we define the ideal class
group

GM = {N ∈ QM : N ⊙N ′ = N ′⊙N = M} .
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This is the maximal subgroup of the semigroup QM . It would be interesting to understand

how M determines the structure of GM . Note that GM =
{[

0 1
1 0

]
,
[
1 0
0 1

]}
in Example 5.32.

Example 5.33. Here are three examples of ideal class groups of graduated orders:

J2 =
[
0 1
1 0

]
J3 =

[
0 1 1
1 0 1
1 1 0

]
J4 =

[
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

]
GJ2 ∼= Z/2Z GJ3 ∼= Z/6Z GJ4 ∼= S4

How does this list continue as we pass from Example 5.3 to pyropes [97, §3] in higher
dimensions?

We end this section with a conjecture about the geometry of GM inside QM .

Conjecture 5.34. For any integer matrix M in the polytrope region Pd, the elements in the
ideal class polytrope GM are among the classical vertices of the ideal class polytrope QM .

5.2.5 Towards the Bruhat-Tits Building

Affine buildings [1, 169] provide a natural setting for orders and min-max convexity. The
objects we discussed in this chapter so far are associated to one apartment in this building,
namely the apartment corresponding to the diagonal lattices. The aim of this section is to
present this perspective and to lay the foundation for the following section where we discuss
bolytropes and bolytrope orders.

We start by recalling reviewing some notions from Section 1.2.

Definition 5.35. The affine building Bd(K) is an infinite simplicial complex. Its vertices are
the equivalence classes [L] of lattices in Kd. A configuration {[L1], . . . , [Ls]} is a simplex in
Bd(K) if and only if, up to some permutation, there exist representatives L̃i ∈ [Li] satisfying
L̃1 ⊃ L̃2 ⊃ · · · ⊃ L̃s ⊃ ϖL̃1. The maximal simplices {[L1], . . . , [Ld]} are called chambers.
The standard chamber C0 is given by the diagonal lattices Li = L(1i−1,0d−i+1) = L(1,...,1,0,...,0).

Given a basis {b1, . . . , bd} of Kd, the apartment defined by this basis is the set of classes
[L] of all lattices L =

⊕d
i=1ϖ

uiOKbi where u1, . . . , ud range over Z. Hence the apartment is

{ [ϖu1OKb1 ⊕ · · · ⊕ϖudOKbd] : u1, . . . , ud ∈ Z } =
{

[gLu] : u ∈ Zd
}
,

where g ∈ GL(d,K) is the matrix with columns b1, . . . , bd. The standard apartment is the one
associated with the standard basis (e1, . . . , ed) of Kd. The vertices of the standard apartment
are the diagonal lattice classes [Lu] for u ∈ Zd. We identify this set of vertices with Zn/Z1.

The general linear group GLd(K) acts on the building Bd(K). This action preserves the
simplicial complex structure. In fact, the action is transitive on lattice classes, on apartments
and also on the chambers. The stabilizer of the standard lattice L0 is the subgroup

GL(d,OK) = { g ∈ Od×d
K : val(det(g)) = 0 } ⊂ GL(d,K).
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Starting from the standard chamber C0, there exist reflections s0, s1, . . . , sd−1 in GL(d,K)
that map C0 to the d adjacent chambers in the standard apartment. For i ≥ 1, define si by

si(ei) = ei+1, si(ei+1) = ei and si(ej) = ej when j ̸= i, i+ 1.

The map s0 is defined by s0(ei) = ei for i = 2, . . . , d−1 and s0(ed) = pe1, s0(e1) = ϖ−1ed. The
reflections s0, . . . , sd−1 are Coxeter generators for the affine Weyl group W = ⟨s0, . . . , sd−1⟩.
The group W acts regularly on the chambers C in the standard apartment [22, § 1.5, Thm. 2]:
for every C there is a unique w ∈ W such that C = wC0. The elements of W are the matrices
hσgu where hσ = (1i=σ(j))i,j for σ ∈ Sd, and u ∈ Zd with u1 + · · · + ud = 0. Thus W is the
semi-direct product of Sd and the group of diagonal matrices gu whose exponents sum to 0.

Our primary object of interest is the Plesken-Zassenhaus order PZ(Γ) of a finite configu-
ration Γ in the affine building Bd(K). This is the intersection (5.8) of endomorphism rings.
In this section we study the case when Γ lies in one apartment. In Theorem 5.14 we showed
that PZ(Γ) = ΛM where M is the matrix in Pd that encodes the min-max convex hull of Γ.
This was used in Sections 5.2.3 and 5.2.4 to elucidate combinatorial and algebraic structures
in PZ(Γ).

The min-max convex hull of Γ will play the role of the polytrope, with its distinguished
vertices representing injective and projective modules, as in Theorem 5.20. Computing that
convex hull requires tools as in [169] but simultaneously in min-plus algebra and max-plus
algebra.

We conclude this section with configurations given by two chambers C,C ′ in Bd(K). We
are interested in the their order PZ(C ∪C ′). A fundamental fact about buildings states that
any two chambers C,C ′ lie in a common apartment, cf. [22, 1]. Also, since the affine Weyl
group W acts regularly on the chambers of the standard apartment, we can then reduce to
the case where the two chambers in question are C0 and wC0 for some w = hσgu ∈ W .

Example 5.36. The standard chamber C0 is encoded by M0 =
∑

1≤i<j≤dEij. The polytrope

QM0 is a simplex. The order PZ(C0) = ΛM0 consists of all X ∈ Od×d
K with xij ∈ ⟨ϖ⟩ for i < j.

Let Du = val(gu) denote the tropical diagonal matrix with u1, . . . , ud on the diagonal and
+∞ elsewhere. We also write Pσ := val(hσ) for the tropical permutation matrix given by σ.

Proposition 5.37. We have PZ(C0 ∪ hσguC0) = ΛMσ,u where the matrix Mσ,u is given by

Mσ,u = M0 ⊕ (Pσ ⊙ Du ⊙ M0 ⊙ D−u ⊙ Pσ−1) .

Proof. We have PZ(C0 ∪ hσguC0) = PZ(C0) ∩ PZ(hσguC0). Recall that PZ(C0) = ΛM0 from
Example 5.36. Suppose that M ∈ Zd×d

0 satisfies PZ(hσguC0) = ΛM . By Theorem 5.14,
the order ΛM0⊕M is equal to PZ(C0 ∪ hσguC0). To determine M , notice that PZ(wC0) =
hσgu PZ(C0)g−uhσ−1 . This implies the stated formula M = Pσ⊙Du⊙M0⊙D−u⊙Pσ−1 .

We may ask for invariants of the orders PZ(C0 ∪ wC0) in terms of w ∈ W . Clearly, not
all polytropes in an apartment arise as the min-max convex hull of two chambers. Which
graduated orders are of the form PZ(C0∪wC0)? Which other elements w′ in the affine Weyl
group W give rise to the same Plesken-Zassenhaus order PZ(C0 ∪wC0) up to isomorphism?
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5.3 Bolytrope orders

In this section, we extend our study to a bigger class of orders we call bolytrope orders.
Roughly speaking, we shall see that these orders arise as the Plesken Zassenhaus rings of the
Minkowski sum of a polytrope and a ball in the building Bd(K). Hence the name bolytrope
which is derived from ball and polytrope. We will start by defining a distance on B0

d(K) (the
set of 0-simplices in Bd(K)) and use it to define balls and bolytropes in the building Bd(K).
Balls are a special type of bolytropes and bolytropes can be thought of as balls “around
polytropes”.

As before, we denote by 1 the vector (1, . . . , 1) ∈ Zd and by Jd the matrix, in Zd×d, with
zeros on the diagonal and ones elsewhere.

5.3.1 The distance

The content of this section heavily depends on the following notion of distance on B0
d(K).

Definition 5.38. Let [L1], [L2] ∈ B0
d(K) be two homothety classes of lattices. Then

dist([L1], [L2]) := min{s : there are L′1 ∈ [L1], L
′
2 ∈ [L2] with ϖsL′1 ⊆ L′2 ⊆ L′1}.

For a subset L ⊆ B0
d(K), we put dist([L],L) := min{dist([L], [L′]) : [L′] ∈ L} and

diam(L) := sup
[L],[L′]∈L

dist([L], [L′])

The set L is called bounded, if its diameter diam(L) is finite.

The following result justifies the name distance for dist.

Lemma 5.39. The map dist : B0
d(K)× B0

d(K)→ Z is a distance on B0
d(K).

Proof. We check that the defining properties of a distance hold. For this, let [L1], [L2] ∈
B0
d(K) with dist([L1], [L2]) = s and let L′1, L

′
2 be as in Definition 5.38. Then

(1) dist([L1], [L2]) = 0 if and only L′1 ⊆ L′2 ⊆ L′1, equivalently [L1] = [L2].

(2) If ϖsL′1 ⊆ L′2 ⊆ L1 then ϖsL′2 ⊆ ϖsL′1 ⊆ L′2, so dist([L1], [L2]) = dist([L2], [L1]).

(3) Let [L3] ∈ B0
d(K) and set s′ = dist([L2], [L3]). Let, moreover L′3 ∈ [L3] and L′′2 ∈ [L2]

be such that ϖs′L′′2 ⊆ L′3 ⊆ L′′2. Write L′′2 = ϖtL′2. Then

ϖtL′1 ⊇ ϖtL′2 ⊇ L′3 ⊇ ϖs′+tL′2 ⊇ ϖs+s′+tL′1 = ϖs+s′(ϖtL′1),

yielding that dist([L1], [L2]) + dist([L2], [L3]) ≥ dist([L1], [L3]).

The choices of [L1], [L2], [L3] being arbitrary, the proof is complete.
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Thanks to the elementary divisor theorem for modules over PIDs, we know that any two
lattices in Kd have compatible bases, i.e. for any two lattice classes [L1] and [L2], there is
always an apartment containing both. So, to compute their distance, we may choose a frame
basis (e1, . . . , ed) of Kd, so that L1 = L(0,...,0) and L2 = L(u1,...,ud) with u1 ≥ . . . ≥ ud. With
this choice, we obtain that dist([L1], [L2]) = u1 − ud.

Remark 5.40. The distance between lattice classes [Lu] and [Lv] in the same apartment
A(E) is given by

dist([Lu], [Lv]) = max
1≤i≤d

(vi − ui)− min
1≤j≤d

(vj − uj).

In particular, any bounded subset of an apartment is finite. For a connection to tropical
geometry, see for instance [96, Section 5.3].

Note that the distance from Definition 5.38 coincides with the 1-skeleton distance on
B0
d(K), as the following result shows. For L and L′ lattices with ϖL ⊂ L′ ⊂ L, write

([L], [L′]) for the 1-simplex with ends [L] and [L′].

Lemma 5.41. Let [L1], [L2] ∈ Bd
0(K) be distinct and set s = dist([L1], [L2]). Then s > 0,

(1) there exist [L1] = [X0], [X1] . . . , [Xs−1], [Xs] = [L2] ∈ B0
d(K) such that ([Xi−1], [Xi]) are

1-simplices for all 1 ≤ i ≤ s, and

(2) there is no shorter sequence connecting [L1] and [L2] in the 1-skeleton of Bd(K).

Proof. The number s is positive as a consequence of Lemma 5.39. Without loss of generality,
assume that ϖsL1 ⊆ L2 ⊆ L1 and put X1 := ϖL1 + L2. Then ϖL1 ⊆ X1 ⊆ L1 and so
([L1], [X1]) is a 1-simplex in Bd(K). For i = 2, . . . , s, put Xi := ϖXi−1 + L2 = ϖiL1 + L2.
Then Xs = L2 and all ([Xi−1], [Xi]) are 1-simplices in the building. We have proven (1), while
(2) follows from the triangle inequality and the fact that two lattice classes in a 1-simplex
have distance at most 1.

5.3.2 Balls and bolytropes

Definition 5.42. Let L be a bounded subset of B0
d(K). Then the closed ball of radius r and

center L is
Br(L) := {[L] ∈ B0

d(K) : dist([L],L) ≤ r}.

If L = {[L]} consists of one element only, then

Br([L]) := Br(L)

is the ball with center [L] and radius r. If L = Q(ΛM), then

Br(M) := Br(Q(ΛM))

is called the bolytrope with center Q(ΛM) and radius r.
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In particular, the ball Br([L]) consists of all lattice classes [L′] that are represented by
some lattice L′ such that ϖrL ⊆ L′ ⊆ L. We close the section by computing the intersection
of a bolytrope with an apartment. Recall that Jd ∈ Pd(Z) is the matrix with all 1s outside
of the main diagonal.

Lemma 5.43. Let A be an apartment containing Q(ΛM). Then

Br(M) ∩ A = Q(ΛM+rJd).

Proof. Let (e1, . . . , ed) be a frame basis defining A and put Q = Q(ΛM+rJd). We will use
Remark 5.11 with respect to this basis. Since ϖrΛM ⊆ ΛM+rJd ⊆ ΛM , we have the inclusion
Q ⊆ Br(M). Now we show the other inclusion. Let [Lu] in A be of distance at most r
from some lattice [Lv] ∈ Q(ΛM). Suppose that [Lu] ̸∈ Q(ΛM+rJd). This means that there
exist 1 ≤ i ̸= j ≤ d such that ui − uj > mij + r. However, since [Lv] ∈ Q(ΛM), we have
vi − vj ≤ mij and hence ui − uj > vi − vj + r. In other words

(ui − vi)− (uj − vj) > r, so dist([Lu], [Lv]) > r.

This is a contradiction and so the proof is complete.

5.3.2.1 Plesken-Zassenhaus closed sets.

We have seen that closed orders are determined by the collection of their stable lattices;
such sets are thus of fundamental importance for the study of closed orders.

Definition 5.44. A subset L of B0
d(K) is called PZ-closed if L = Q(Λ) for some order Λ.

For the study of PZ-closed subsets it clearly suffices to consider closed orders Λ. Note
that the bijection Λ↔ Q(Λ) is a Galois correspondence between

{ closed orders in Kd×d } ←→ { PZ-closed subsets of B0
d(K) }.

Remark 5.45. Let M :=
(
0 0
1 0

)
∈ Pd(Z). Then ΛM is a graduated order with

Q(ΛM) = {[L(0,1)], [L(0,0)]}.

Let Λ := {X ∈ ΛM : X11 ≡ X22 mod ϖ}. Then Λ is an order in K2×2 satisfying Q(Λ) =
Q(ΛM). It follows that Λ is not a closed order.

Remark 5.46. The following is a summary of Proposition 5.8, Corollary 5.13 and Theo-
rem 5.20. If M ∈ Pd(Z), then the graduated order ΛM is closed and

Q(ΛM) = {[Lu] : u ∈ Zd, u+ R1 ∈ QM}

is a finite set which we can identify with the integral points of the polytrope QM . More-
over, the projective ΛM -lattices are given by the columns of M in the following way: if
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M (1), . . . ,M (d) denote the columns of M , then, for each projective ΛM -lattice L, there exists
i ∈ {1, . . . , d} such that L is homothetic to

Pi := ΛMϵi = LM(i) .

The polytrope QM is the min-convex hull of the set {M (1) + R1, . . . ,M (d) + R1} and has
dimension dim(QM) = |{[P1], . . . , [Pd]}| − 1. The order ΛM = PZ([P1], . . . , [Pd]) is the
Plesken-Zassenhaus order of its projective (i.e. projective as ΛM -modules) lattices in Kd.

As noted in Remark 5.46, the PZ-closed subsets of one apartment A are exactly the finite
and convex subsets of B0

d(K), i.e. the polytropes. In general, being bounded and convex is
a necessary but not sufficient condition for a subset of B0

d(K) to be closed.

Proposition 5.47. Let Λ be an order in Kd×d. Then Q(Λ) is a non-empty bounded convex
subset of B0

d(K).

Proof. As any order is contained in a maximal order, there is some maximal order Γ, with
Λ ⊆ Γ. Both lattices Λ and Γ have full rank in Kd×d, so there is r ∈ Z≥0 such that
ϖrΓ ⊆ Λ ⊆ Γ. If [L] is the unique class of Γ-lattices, then [L] ∈ Q(Λ) and hence Q(Λ)
is not empty. Moreover, all lattice classes in Q(Λ) have a representative between L and
(ϖrΓ)L = ϖrL, so Q(Λ) is contained in the ball of radius r around [L]. In particular, Q(Λ)
is bounded. To see convexity, let [L′], [L′′] ∈ Q(Λ). Then there is an apartment containing
both lattice classes, so Γ′ := EndOK

(L′)∩EndOK
(L′′) is a graduated order containing Λ. But

then the convex set Q(Γ′) ⊆ Q(Λ) contains both lattice classes [L′] and [L′′], and, [L′] and
[L′′] being arbitrary, Q(Λ) is convex.

Remark 5.48. Let Λ be an order in Kd×d and let A be an apartment in Bd(K) such that
Q(Λ) ∩ A ≠ ∅. Then

Q(Λ) ∩ A = Q(Γ)

for a unique graduated overorder Γ of Λ. Indeed, if A = A(E) and E = {ϵ1, . . . , ϵd} is the
set of projections on the frame E, then there are only finitely many maximal overorders of
Λ that contain E . Their intersection is the desired graduated order Γ.

Definition 5.49. Let L be a bounded subset of B0
d(K). The Plesken-Zassenhaus order

associated to L is
PZ(L) :=

⋂
[L]∈L

EndOK
(L).

Proposition 5.50. The Plesken-Zassenhaus order PZ(L) of a bounded subset L of B0
d(K)

is an OK-order in Kd×d

Proof. Put Λ = PZ(L). Then Λ is an OK-module that is closed under multiplication and
contains Idd. It remains to show that Λ is of full rank in Kd×d. As L is bounded, there are
[L] ∈ L and r ∈ Z≥0 such that L ⊆ Br([L]). For the maximal order Γ = EndOK

(L) we hence
have that ϖrΓL′ ⊆ L′ for all [L′] ∈ L. So ϖrΓ ⊆ Λ ⊆ Γ and, as ϖrΓ contains a K-basis of
Kd×d, the same is true for Λ.
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The next proposition shows that closed orders are always an intersection of finitely many
maximal orders.

Proposition 5.51. Let L ⊆ B0
d(K) be bounded and let Λ = PZ(L) denote its Plesken-

Zassenhaus order. Then there exists a finite subset {[L1], . . . , [Ln]} of L such that Λ =
PZ([L1], . . . , [Ln]).

Proof. Choose [L1] ∈ L arbitrarily and put Γ = EndOK
(L1). As L is bounded, there is

r ∈ Z≥0 such that L ⊆ Br([L1]) and so

ϖrΓ ⊆ Λ ⊆ Γ.

In particular, the OK-module Γ/Λ has finite composition length (at most the composition
length d2r of Γ/ϖrΓ). We proceed by induction on this composition length. If Γ = Λ then
we are done, otherwise there is some [L2] ∈ L such that [L2] ̸∈ Q(Γ). Replace Γ by Γ ∩
EndOK

(L2) = PZ([L1], [L2]) to decrease the composition length of Γ/Λ. After finitely many
steps this process constructs the finite set {[L1], . . . , [Ln]} with Λ = PZ([L1], . . . , [Ln]).

For a closed order Λ, the minimal cardinality of a set L such that Λ = PZ(L) is hence
an interesting invariant.

Definition 5.52. Let Λ be a closed order. Then the degree of Λ is

deg(Λ) := min{|L| − 1: L ⊆ B0
d(K) with Λ = PZ(L)}.

Thanks to Proposition 5.51, any closed order is a finite intersection of maximal orders,
so the degree of a closed order is always finite. The closed orders of degree 0 are exactly the
maximal orders and the ones of degree 1 are certain graduated orders. In general, the degree
of a graduated order ΛM is equal to dim(QM), cf. Remark 5.46. In the coming sections,
we will see that, for ball orders and bolytrope orders, the degree is always bounded from
above by d, cf. Theorems 5.65 and 5.75, though such a bound need not always be sharp, cf.
Remark 5.66.

5.3.3 The radical idealizer process

Let Λ be an order in Kd×d. In this section, we describe the radical idealizer chain of Λ,
a construction that will be at the foundation of the proofs of our main results.

Definition 5.53. Let Λ and L be an order and a lattice in Kd×d, respectively.

• The Jacobson radical Jac(Λ) of Λ is the intersection of all maximal left ideals of Λ.

• The idealizer of L is Id(L) := {X ∈ Kd×d : XL ⊆ L and LX ⊆ L}.
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Remark 5.54. If Λ is an order in Kd×d, then Jac(Λ) is a two-sided ideal of Λ that contains
ϖΛ. The quotient Λ/ Jac(Λ) is a semisimple OK/mK-algebra and, for some n, one has
Jac(Λ)n ⊆ ϖΛ. Moreover, Jac(Λ) is the unique pro-nilpotent ideal with semisimple quotient
ring. For this and more, see for instance [138, Chapter 1, Section 6].

Definition 5.55. Let Λ be an order in Kd×d. The radical idealizer chain (Ωi)i≥0 of Λ is
recursively defined by

Ω0 := Λ and Ωi+1 = Id(Jac(Ωi)).

Remark 5.56. The radical idealizer chain of an order Λ is an ascending finite chain Ω0 ⊂
Ω1 ⊂ . . . ⊂ Ωs = Ωs+1 = . . .; cf. [129, Remark 3.8]. Moreover, as ϖΛ ⊆ Jac(Λ), we have

Λ ⊆ Ω1 = Id(Jac(Λ)) ⊂ 1

ϖ
Λ.

This yields an algorithm to compute the radical idealizer chain for orders based on solving
linear equations in the residue field; cf. [129]. The sets of invariant lattices Li := Q(Ωi) form
a descending chain

L0 ⊃ L1 ⊃ . . . ⊃ Ls,

where the last element Ls = Q(Ωs) is known to be a simplex in the building Bd(K); cf.
[138, Theorem (39.14)]. The length s ≥ 0 of the radical idealizer chain is called the radical
idealizer length of the order Λ.

Lemma 5.57. Let Λ be an order in Kd×d and put Ω1 := Id(Jac(Λ)). Then

Q(Ω1) ⊆ Q(Λ) ⊆ B1(Q(Ω1)).

In particular, all lattices in Q(Λ) have distance at most one from Q(Ω1).

Proof. As Ω1 ⊇ Λ, we know that Q(Ω1) ⊆ Q(Λ) and thus we get Q(Ω1) = {[Ω1L] : [L] ∈
Q(Λ)}. Moreover, by Remark 5.56, we have Λ ⊆ Ω1 ⊆ 1

ϖ
Λ, so L ⊆ Ω1L ⊆ 1

ϖ
L and hence

dist([L], [Ω1L]) ≤ 1, for all [L] ∈ Q(Λ).

Lemma 5.58. Let M ∈ Pd(Z). Then Id(Jac(ΛM+Jd)) = ΛM .

Proof. As dim(QM+Jd) = d−1, we know by Example 5.27 that the Jacobson radical of ΛM+Jd

is equal to ϖΛM . This is a 2-sided principal ideal in the order ΛM , so Id(ϖΛM) = ΛM .
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Figure 5.4: The radical idealizer process for the order ΛM in Example 5.59

Example 5.59. Consider the configuration of lattice classes [Lu1 ], [Lu2 ] and [Lu3 ] where

u1 = (0, 12, 5) ∼ (−5, 7, 0), u2 = (7, 0, 6) ∼ (1,−6, 0), and u3 = (9, 8, 0).

In the notation of Section 5.2, this configuration corresponds to the matrix

M =

 0 7 9
12 0 8
5 6 0


and the decreasing sequence of polytropes (Q(Ωi))i≥0 corresponding to the radical idealizer
process for the order ΛM is depicted in Figure 5.4. As expected, the last polytrope (in white)
is indeed a simplex.

5.3.4 Ball Orders

In this section, we define and study a first subfamily of the bolytrope orders, namely
closed orders whose set of invariant lattices is a ball in B0

d(K).

Definition 5.60. A ball order in Kd×d is an order of the form Br([L]) := PZ(Br([L])), where
L is a lattice in Kd and r ∈ Z≥0

Theorem 5.61. Let L be a lattice in Kd, (e1, . . . , ed) a basis of L and r a non-negative
integer. Then, with respect to (e1, . . . , ed), we have

Br([L]) = {X ∈ ΛrJd : X11 ≡ . . . ≡ Xdd mod ϖr}.

Moreover, Q(Br([L])) = Br([L]) and the ball Br([L]) is PZ-closed.
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Proof. Put Λ = {X ∈ ΛrJd : X11 ≡ . . . ≡ Xdd mod ϖr} and Γ = EndOK
(L) = Λ(0). It

follows from the definition of Λ that ϖrΓ ⊆ Λ. If L′ is another lattice such that ϖrL ⊆ L′ ⊆
L, then ϖrΓL′ ⊆ ϖrΓL = ϖrL ⊆ L′, which yields ϖrΓ ⊆ Br([L]). Now the lattice classes at
distance at most r from [L] can be described as submodules of Vr = L/ϖrL. In particular,
the image Br([L]) of Br([L]) in the endomorphism ring EndOK

(Vr) ∼= (OK/m
r
K)d×d is equal

to the collection of all endomorphisms stabilizing every submodule of Vr. This ensures that

Br([L]) = (OK/m
r
K) Idd = Λ.

As both orders Br([L]) and Λ contain the kernel ϖrΓ of the projection Γ→ EndOK
(Vr), we

conclude that Λ = Br([L]) = PZ(Br([L])). We now show that Q(Br([L])) = Br([L]). To this
end, let [L′] ∈ Q(Λ). Then [ΓL′] ∈ Q(Γ) = {[L]}. Replacing L′ by some homothetic lattice
we hence may assume that ΓL′ = L. But ϖrΓ ⊆ Λ ⊆ EndOK

(L′) so ϖrΓL′ = ϖrL ⊆ L′ so
[L′] ∈ Br([L]).

Remark 5.62. (Radical idealizer chain of ball orders) Let r be a positive integer. Then the
Jacobson radical of the ball order Br([L]) = PZ(Br([L])) is Jac(Br([L])) = ϖBr−1([L]), be-
cause ϖBr−1([L]) is a pro-nilpotent ideal of Br([L]) with simple quotient Br([L])/ϖBr−1([L])
isomorphic to OK/mK . Now ϖBr−1([L]) is a principal 2-sided ideal of Br−1([L]) so

Id(Jac(Br([L]))) = Id(ϖBr−1([L])) = Br−1([L])

and the radical idealizer chain for ball orders is thus

Br([L]) ⊂ Br−1([L]) ⊂ . . . ⊂ B1([L]) ⊂ B0([L]) = EndOK
(L).

The corresponding chain of PZ-closed subsets of B0
d(K) is

Br([L]) ⊃ Br−1([L]) ⊃ . . . ⊃ B1([L]) ⊃ B0([L]) = {[L]}.

The knowledge of the radical idealizer chain of ball orders allows to prove strong properties
of ball orders, like the following.

Proposition 5.63. Let r be a positive integer and Λ a closed order in Kd×d such that
Id(Jac(Λ)) = Br−1([L]). Then one has Br([L]) ⊆ Λ ⊆ Br−1([L]).

Proof. It follows from the hypotheses and the combination of Lemma 5.57 with Theorem 5.61
that Br−1([L]) ⊆ Q(Λ) ⊆ Br([L]). The orders being closed, Remark 5.62 yields that Br([L]) ⊆
Λ ⊆ Br−1([L]).

Definition 5.64. Let r be a non-negative integer and L a lattice in Kd. A star configuration
⋆r([L]) with center [L] and radius r is a set

⋆r([L]) = {[L1], . . . , [Ld], [Ld+1]}

such that the following hold:



CHAPTER 5. ORDERS AND CONVEX SETS IN BRUHAT-TITS BUILDINGS 122

(1) ϖrL ⊆ L1, . . . , Ld+1 ⊆ L,

(2) for each i ∈ {1, . . . , d+ 1}, one has Li/ϖ
rL ∼= OK/m

r
K ,

(3) for each i ∈ {1, . . . , d+ 1}, one has L =
∑

j ̸=i Lj.

When r = 1, i.e. when OK/m
r
K is a field, the 1-dimensional free OK/m

r
K-modules Li/ϖ

rL
of L/ϖrL form a projective basis. In this sense, Definition 5.64 generalizes the definition of
a projective basis to modules over rings.

Theorem 5.65. Let r be a non-negative integer and let L be a lattice in Kd. Let, moreover,
⋆r([L]) denote a star configuration with center [L] and radius r. Then one has

Br([L]) = PZ(⋆r([L])) and deg(Br([L])) ≤ d.

Proof. Write Λ := PZ(⋆r([L])) and ⋆r([L]) =: {[L1], . . . , [Ld+1]}. Since ⋆r([L]) has radius
r, we have that ⋆r([L]) ⊆ Br([L]), so Λ ⊇ Br([L]). We now claim that Λ stabilizes all
lattices L′ with ϖrL ⊆ L′ ⊆ L. To this end, write L = L/ϖrL and use the bar notation
for the submodules of L. For 1 ≤ i ≤ d let ei ∈ Li be such that OKei = Li. Since
L1 + . . .+Ld = L, the set {e1, . . . , ed} is a basis of the free module L. So there are ai ∈ OK

such that OK

∑d
i=1 aiei = Ld+1. Since ⋆r([L]) is a star configuration, all ai’s are units, so,

replacing ei by aiei, we assume, without loss of generality, that Ld+1 = OK(e1+. . .+ed)+ϖ
rL.

Since each Li is Λ-stable, the image of Λ in End(L) ∼= (OK/m
r
K)d×d consists of scalar matrices

and so all submodules of L are stable. This yields the claim and so Br([L]) = PZ(⋆r([L])).
The order Br([L]) has degree at most d, because a star configuration has cardinality d+1.

The following remark shows that ball orders in Kd×d can have degree (in the sense of
Definition 5.52) smaller than d.

Remark 5.66. The degree of Br([O4
K ]) is at most 3, because Br([O4

K ]) is equal to the
Plesken-Zassenhaus order of the following lattices (where the columns of the matrices are
the basis elements):

1 0 0 0
0 1 0 0
1 0 ϖr 0
0 0 0 ϖr

 ,


ϖr 0 0 0
0 ϖr 0 0
0 0 1 0
0 0 0 1

 ,


1 0 0 0
0 1 0 0
1 1 ϖr 0
1 0 0 ϖr

 , and


ϖr 0 0 0
0 1 0 0
0 0 ϖr 0
0 1 0 ϖr

 .

Via change of coordinates, one obtains that any ball order in K4×4 has degree at most 3.

5.3.5 Bolytrope Orders

Let M ∈ Pd(Z). Recall, from Definition 5.42, that the bolytrope Br(M) is defined to be
Br(Q(ΛM)).
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Definition 5.67. A bolytrope order is an order of the form Br(M) := PZ(Br(M)), where M
is an element of Pd(Z) and r is a non-negative integer.

Until the end of the present section, fix M ∈ Pd(Z) and an apartment A containing
Q(ΛM). Let, moreover, r be a non-negative integer. Then, by Lemma 5.43, we have that
Br(M) ∩ A = Q(ΛM+rJd), in particular Br(M) ⊆ ΛM+rJd . Put

Λr(M) = {X ∈ ΛM+rJd : X11 ≡ . . . ≡ Xdd mod ϖr}.

We will show that Λr(M) = Br(M) and Q(Λr(M)) = Br(M) is PZ-closed; cf. Theorem 5.72.

Lemma 5.68. Let [L] be a lattice class in Q(ΛM). Then Λr(M) = ΛM+rJd ∩ Br([L]) and
Λr(M) is a closed order.

Proof. Let (e1, . . . , ed) be a basis of L that is also a frame basis defining the apartment A.
Then, with respect to this basis, [L] = [Od

K ] and thus ΛM ⊆ EndOK
(L) = Od×d

K = Λ0d×d . It
follows in particular that M has non-negative entries. The explicit description of the ball
order in Theorem 5.61 allows to deduce that Λr(M) = ΛM+rJd ∩ Br([L]). Since ΛM+rJd and
Br([L]) are closed orders, then so is Λr(M).

Lemma 5.69. One has Br(M) ⊆ Q(Λr(M)) and Λr(M) ⊆ Br(M).

Proof. We first show that Br(M) ⊆ Q(Λr(M)). To that end, let [L′] ∈ Br(M) and let
[L] ∈ Q(ΛM) be such that dist([L′], [L]) ≤ r. Then the combination of Remark 5.62 and
Lemma 5.68 yields

[L′] ∈ Br([L]) = Q(Br([L])) ⊆ Q(Λr(M)).

To conclude, the inclusion Br(M) ⊆ Q(Λr(M)) implies that Λr(M) ⊆ Br(M).

To prove that Br(M) = Λr(M) we use the radical idealizer chain of Λr(M), which we
describe in the following remark.

Remark 5.70. Assume that r ≥ 1. Then, similarly to what is done in Remark 5.62,
one sees that Jac(Λr(M)) = ϖΛr−1(M) is a 2-sided principal ideal of Λr−1(M) and hence
Id(Jac(Λr(M))) = Λr−1(M).

Lemma 5.71. One has Q(Λr(M)) = Br(M).

Proof. Lemma 5.69 shows that Br(M) ⊆ Q(Λr(M)). For the opposite inclusion, we rely on
Remark 5.70 to proceed by induction on r. Assume first that r = 0. Then Q(Λ0(M)) =
Q(ΛM) = B0(M) and so we are done. Now assume that r > 0 and that Q(Λr−1(M)) =
Br−1(M). The fact that Λr−1(M) = Id(Jac(Λr(M))) together with Lemma 5.57 then yields
that

Q(Λr(M)) ⊆ B1(Q(Λr−1(M))) = B1(Br−1(M)) ⊆ Br(M).

This concludes the proof.
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The following is the main result of this section.

Theorem 5.72. The following hold:

Λr(M) = Br(M) and Q(Br(M))) = Br(M).

In particular, bolytrope orders are closed, and bolytropes are PZ-closed.

Proof. As a consequence of Lemma 5.68, both Λr(M) and Br(M) are closed orders. We are
now done thanks to Lemma 5.71.

Corollary 5.73. The beginning of the radical idealizer chain for bolytrope orders is

Br(M) ⊂ Br−1(M) ⊂ . . . ⊂ B1(M) ⊂ B0(M) = ΛM .

The first r + 1 elements in the corresponding chain of PZ-closed subsets of B0
d(K) are

Br(M) ⊃ Br−1(M) ⊃ . . . ⊃ B1(M) ⊃ Q(ΛM).

Note that ΛM is the first term in the radical idealizer process that is a graduated order.
The polytrope Q(ΛM) is hence canonically determined by the bolytrope Br(M) and called
the central polytrope of Br(M).

In analogy with ball orders, we obtain the following stronger property of bolytrope orders.

Corollary 5.74. Assume that r ≥ 1 and let Λ be a closed order in Kd×d such that we have
Id(Jac(Λ)) = Br−1(M). Then Br(M) ⊆ Λ ⊆ Br−1(M).

Proof. Analogous to the proof of Proposition 5.63.

The following theorem states that any bolytrope (and hence also any bolytrop order) can
be determined by at most d + 1 lattice classes. That is any bolytrope order is of degree at
most d, in the sense of Definition 5.52.

Theorem 5.75. Let [P1], . . . , [Pd] be the distinct classes of projective ΛM+rJd-lattices. Then
there is a lattice class [Ld+1] ∈ Br(M), such that

Br(M) = PZ([P1], . . . , [Pd], [Ld+1]).

Moreover, the degree of Br(M) is at most d.

Proof. As a consequence of Remark 5.46, we have that ΛM+rJd = PZ([P1], . . . , [Pd]). In
particular, for any lattice class [Ld+1] ∈ Br(M), Lemma 5.68 and Theorem 5.72 imply that

Br(M) ⊆ PZ([P1], . . . , [Pd], [Ld+1]) ⊆ ΛM+rJd .

To construct Ld+1 such that the inclusion Br(M) ⊇ PZ([P1], . . . , [Pd], [Ld+1]) holds, choose
[L] ∈ Q(ΛM) and a lattice basis (e1, . . . , ed) of L that is also a frame basis for some apartment
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containing Q(ΛM+rJd). Define Ld+1 := OK(e1 + . . . + ed) + ϖrL and, for each i = 1, . . . , d,
put Li := OKei + ϖrL ∈ Q(ΛM+rJd). Then {[L1], . . . , [Ld], [Ld+1]} is a star configuration
with center [L] and radius r. By Theorem 5.65, we thus have

PZ([L1], . . . , [Ld], [Ld+1]) = Br([L]),

which, together with Lemma 5.68 and Theorem 5.72, implies that the order

PZ([P1], . . . , [Pd], [Ld+1])

is contained in
ΛM+rJd ∩ Br([L]) = Λr(M) = Br(M).

5.3.6 When the building is a tree

Throughout this section, assume that d = 2. Then the building B2(K) is an infinite
tree. Apartments correspond to infinite paths in the tree and the bounded convex subsets
of B2(K) are the bounded subtrees. For more on this and other trees, see for instance [148].

The following is the main result of this section. It extends [164, Theorem 2] beyond the
case of finite residue fields.

Theorem 5.76. Let Λ be a closed order in K2×2. Then there are r,m ∈ Z≥0 such that

Λ = Br

((
0 m
0 0

))
= {X ∈ O2×2

K : X12 ∈ mm+r
K , X21 ∈ mr

K , X11 ≡ X22 mod ϖr}.

Proof. Put R := max{dist([L], [L′]) : [L], [L′] ∈ Q(Λ)} and let [L1], [L2] ∈ Q(Λ) be such that
R = dist([L1], [L2]). Then the convex hull

L = Q(PZ([L1], [L2])) ⊆ Q(Λ)

is a line segment and is hence contained in an apartment A. Define

r := max{dist([L],L)|[L] ∈ Q(Λ)}

and let [L3] ∈ Q(Λ) be such that r = dist([L3],L). Let, moreover, [L0] ∈ L denote the
unique lattice class in L satisfying dist([L3], [L0]) = r.

[L1] [L′
1] [L0]

r

[L3]

[L′
2] [L2]
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Now choose a frame basis (e1, e2) for A such that, with respect to this basis, there exists
an integer m such that [L1] = [L(0,r)] and [L2] = [L(m+r,0)]. It follows from the definition of
R that

R + 1 = |L| = m+ 2r + 1.

With respect to the chosen basis, note now that L = Q(ΛM+rJ2) and hence

Λ ⊆ ΛM+rJ2 .

Moreover, if [L′1] and [L′2] ∈ L are the two lattice classes at distance r from [L0] and such
that dist([L′1], [L

′
2]) = 2r, then the set {[L3], [L

′
1], [L

′
2]} is a star configuration with radius r

and center [L0]. As a consequence of the definition of L, such lattice classes [L′1], [L
′
2] exist

and thus Theorem 5.65 ensures that

Λ ⊆ Br([L0]).

We have proven that Λ ⊆ Br([L0]) ∩ ΛM+rJ2 and so Λ ⊆ Br(M), thanks to Lemma 5.68. As
Q(Λ) ⊆ Br(M) = Q(Br(M)), we obtain Λ = Br(M) as stated in the theorem.

[L2]

[L1]
[L3]

Figure 5.5: The bolytrope B1(Q) = B1

((
0 7
0 0

))
in the Bruhat Tits tree of SL2(Q2). The

green segment is the central polytrope Q := Q
((

0 7
0 0

))
= {[L(i,0) : 0 ≤ i ≤ 7}. The set

L = Q
((

0 8
1 0

))
is the convex hull of [L1] = [L(0,1)] and [L2] = [L(8,0)]. The blue vertices are

the points at distance 1 from Q. The PZ-order of the lattice classes [L1], [L2] and [L3] is the
same as the PZ-order of all the colored vertices.

Corollary 5.77. The PZ-closed subset of B0
2(K) are precisely the bolytropes.
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Corollary 5.78. The degree of a closed order Λ in K2×2 is 0, 1, or 2. Orders of degree
0 are the maximal orders, whereas the closed orders of degree 1 are precisely the graduated
non-maximal orders. All non-graduated closed orders in K2×2 have degree 2.

Remark 5.79. Theorem 5.75 implies [164, Theorems 1 and 8]. To see this, note that, by
taking [L1], [L2], [L3] as in the proof of Theorem 5.76, we get that Λ = PZ([L1], [L2], [L3]).

5.4 Conclusion

In conclusion, graduated orders are Plessken-Zassenhaus rings of configurations of lattice
classes that are contained in one apartment. The structure of these orders is very tightly
linked to the tropical geometry and combinatorics of their set of invariant lattices which is a
polytrope in the tropical torus. Bolytrope orders are a generalization of Graduated orders.
They arise as the Plessken-Zassenhaus rings of the Minkowski sum of a polytrope and a ball
in the Bruhat-Tits building Bd(K).
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Chapter 6

Non-archimedean Schur
representations of GL(n,OK) and
invariant lattices

This chapter is based on joint work [51] with Antonio Lerario.

6.1 Introduction

Let K be a discretely valued non-archimedean field and OK its valuation ring. Given a
vector space V of dimension n over K (identified with Kn through the choice of a basis) and
a partition λ of an integer d, in this chapter we address the problem of determining lattices
in the Schur module Sλ(V ) which are invariant under the action of GL(n,OK) given by the
representation

ρn,λ : GL(n,OK)→ GL(Sλ(V )). (6.1)

Our motivation for this problem has a probabilistic origin. In fact, in the case K = Qp, OK =
Zp and λ = (d), we have Sλ(V ) ≃ Qp[x1, . . . , xn](d), the space of homogenous polynomials in n
variables of degree d, with the action of GL(n,Zp) by linear change of variables. The problem
of determining lattices in Qp[x1, . . . , xn](d) which are invariant under this action is equivalent
to the problem of determining Gaussian probability distributions on Qp[x1, . . . , xn](d) (in
the sense of Evans, see Section 1.1.4, Chapter 3 and [68, 61, 63, 64, 65, 66]) which are
invariant under this action and has recently become of particular interest in the context of
the emerging field of “Probabilistic Algebraic Geometry” (see Chapter 3). We will discuss
this connection with more details in Section 6.1.2 (see also Section 6.2). The next theorem
is our main result.

Theorem 6.1. Let p be the residue characteristic of K and λ be a partition of d ≥ 1. If
none the hook lengths of λ is divisible by p, then there exists a unique lattice in Sλ(V ) (up
to scaling) which is invariant under the action of GL(n,OK).
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Remark 6.2. The condition that the partition λ is p-core is necessary. For a counter
example, see Example 6.12.

Recall that the hook length of a box in the Young diagram of a partition λ is obtained by
adding 1 to the number of boxes below and to the right of the box in question. If a prime ℓ
does not divide any of the hook lengths of λ, the partition is said to be ℓ-core (by convention
every partition is 0-core). In particular if p > d then λ is p-core and the hypotheses of
Theorem 6.1 are satisfied.

6.1.1 Group actions on the Bruhat-Tits Buildings.

Our main result can be restated more precisely (see Theorem 6.11) using the language of
Buildings. These are combinatorial and geometric structures that generalize certain aspects
of Riemannian symmetric spaces, see [94, 141]. These structures were introduced to better
understand reductive algebraic groups via their action on such structures which are of interest
in geometric group theory [52, 55, 136, 137].

In our context, observe that lattices in Sλ(V ) (up to homothety) are points in the Bruhat-
Tits building Bn,λ for PGL(Sλ(V )). This is an infinite simplicial complex whose 0-simplices
are the homothety classes of lattices in Sλ(V ), see Section 1.2. The action of GL(n,OK) on
Sλ(V ) induces an action on the building Bn,λ i.e. we have a group homomorphism

ρBn,λ : GL(n,OK)→ Aut(Bn,λ),

sending GL(n,OK) to the group of automorphisms of the building. With this notation,
Theorem 6.11 below states that if λ is char(K)-core, the set of fixed points of this action is
a non-empty finite convex set in the building Bn,λ, reduced to one point if λ is p-core, where
p is the residue characteristic of K.

6.1.2 Probabilistic Algebraic Geometry.

In the last years there has been an increasing interest into the statistical behaviour of
algebraic sets over non-algebraically closed fields. When the notion of “generic” is no longer
available, one seeks for a “random” study of the objects of interest. For instance, once a
probability distribution is put on the space K[x1, . . . , xn](d) of homogeneous polynomials, one
can study expected properties of their zero sets in projective space Pn−1

K (e.g. the expected
number of solutions of systems of random equations), see for instance [5, 16, 28, 45, 46, 48,
50, 54, 76, 74, 75, 102, 105, 109, 110, 128, 143, 149, 150, 151].

The appropriate choice of a norm on Kn (using a scalar product when K = R, a hermitian
product when K = C or a non-archimedean norm when K = Qp) induces a metric structure
on Pn−1

K and the group Iso(Kn) ⊂ GL(n,K) of linear norm-preserving transformations, acts
by isometries on the projective space. In this context it is natural to put a probability
distribution on the space of polynomials K[x1, . . . , xn](d) which is invariant under the action
of Iso(Kn) induced by change of variables – there should be no preferred points or directions
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in projective space. An interesting problem is therefore to find (and possibly classify) all the
probability distributions on K[x1, . . . , xn](d) having this property.

When K = R,C, and in the case of nondegenerate Gaussian distributions, this problem
is equivalent to the problem of finding scalar products (hermitian structures in the complex
case) on K[x1, . . . , xn](d) which are preserved by orthogonal (unitary in the complex case)
change of variables, and it was solved by Kostlan [101] using representation theory.

If K = C, then Iso(Cn) ≃ U(n,C) and, since the change of variables representation

ρCn,d : U(n,C)→ GL(C[x1, . . . , xn](d))

is irreducible, by Schur’s Lemma there is a unique such hermitian structure (up to multiples).
If K = R, then Iso(Rn) ≃ O(n,R) and the representation

ρRn,d : O(n,R)→ GL(R[x1, . . . , xn](d))

is not irreducible. Its irreducible summands are spaces of spherical harmonics and there is
a whole ⌊d

2
⌋-dimensional family of scalar products having the desired property, see [101].

If K = Qp, then Iso(Qn
p ) ≃ GL(n,Zp) (see [69, Theorem 2.4]). Moreover, Evans [68,

61, 63, 64, 65, 66] introduced a notion of Gaussian distribution on a p-adic vector space,
which essentially corresponds to a choice of lattice in the vector space (in the same way as
real Gaussian structures corresponds to scalar products, see Section 1.1.4 and Section 6.2).
Using this correspondence, in this context the above problem can be formulated as: find all
lattices in Qp[x1, . . . , xn](d) which are invariant under the action of GL(n,Zp) by change of
variables.

Our Theorem 6.1 implies that, if λ is p-core (in particular if p > d), there is only one
such lattice (up to scaling) and therefore only one probability distribution on Qp[x1, . . . , xn](d)
with the required property (up to scaling). See Section 6.2 for more details.

Here again the irreducibility of ρ
Qp

n,d : GL(n,Zp) → GL(Qp[x1, . . . , xn](d)) (Theorem 6.10
below) plays a role for the uniqueness, but in a different way (compared to the complex
case). More generally, we have the following result, proved in subsection 6.4.3.

Corollary 6.3. Suppose K is a non-archimedean local field and assume that λ is char(K)-
core. Then there are only finitely many Gaussian distributions on Sλ(V ) (up to scaling) that
are invariant under the action of GL(n,OK) through ρn,λ. Moreover, if λ is also p-core,
where p is the residue characteristic of K, there is only one such measure (up to scaling).

This chapter is organized as follows. In Section 6.2, we explain the probabilistic motiva-
tion behind the work presented in this chapter. We collect some background and preliminary
results in Section 6.3, and prove our main results in Section 6.4. Finally, we discuss some
open questions and final remarks in Section 6.5.

6.2 Probabilistic motivation

We recall in this section some standard notions from probability, to help the reader to
put our results into context. The reader may skip this section and come back to it later.
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6.2.1 Gaussian distributions on real vector spaces

We start by recalling the notion of Gaussian distributions on a real vector space. First,
the standard Gaussian distribution on Rm is the probability measure γm on Rm defined for
every Borel set U ⊆ Rm by

γm(U) :=
1

(2π)
m
2

∫
U

e−
∥x∥2

2 dx,

where ∥x∥ :=
√
|x1|2 + · · ·+ |xn|2 denotes the Euclidean norm of x = (x1, . . . , xm). In

practice, if {e1, . . . , em} is an orthonormal basis for the Euclidean norm and ξ1, . . . , ξm are
independent, standard Gaussians (i.e. P(ξj ≤ t) = γ1(−∞, t) for every j = 1, . . . ,m),
sampling from the standard Gaussian distribution on Rm is equivalent to picking an element
ξ ∈ Rm at random by writing it as a random linear combination

ξ = ξ1e1 + · · ·+ ξmem.

More generally, a nondegenerate, centered, Gaussian distribution on a real finite dimen-
sional vector space V is given by assigning a surjective linear map T : Rm → V and defining
P(W ) := γm(T−1(W )) for every Borel set W ⊆ V . (This measure is denoted by T#γm and
called the push-forward measure.) Writing Rm = Ker(T )⊕Ker(T )⊥, one gets a linear isomor-
phism V ≃ Ker(T )⊥ and an induced scalar product on V . As above, if {v1, . . . , vn} denotes
an orthonormal basis for V , this construction is equivalent to define a random element in V
by ξ1v1 + · · ·+ξnvn, with the ξj’s standard, independent Gaussians. Viceversa, given a scalar
product on V and an orthonormal basis {v1, . . . , vn} for it, putting ξ := ξ1v1 + · · · + ξnvn,
where the ξi are standard, independent Gaussians, defines a random variables with values
in V and the induced probability distribution is nondegenerate, centered and Gaussian (as
a map T : Rn → V in this case we could simply take T (ei) := vi).

From this we see that the theory of nondegenerate, centered, Gaussian distributions on
V is equivalent to the theory of nondegenerate positive definite quadratic forms on it (i.e.
scalar products). In particular, once a representation ρ : G → GL(V ) is given, asking for
the nondegenerate, centered Gaussian probability distributions γ on V which are ρ-invariant
(i.e. such that ρ(g)#γ = γ for all g ∈ G) is equivalent to ask for the scalar products ⟨·, ·⟩
on V which are ρ-invariant (i.e. such that ⟨v1, v2⟩ = ⟨ρ(g)v1, ρ(g)v2⟩ for all v1, v2 ∈ V and
g ∈ G).

In particular, if the representation ρ is irreducible, Schur’s Lemma implies that there is
only one such invariant scalar product (up to multiples) and, consequently, only one invariant
Gaussian distribution (up to scaling). If the representation is not irreducible, this is no longer
true as it happens for the case of real polynomials.
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6.2.2 Invariant Gaussian distributions on the space of real and
complex polynomials

Let now ρCn,d : U(n,C) → GL(C[x1, . . . , xn](d)) be the representation given by change of
variables:

ρCn,d(g)(P ) := P ◦ g−1.
This representation is complex irreducible and, consequently, there is only one ρCn,d-invariant
hermitian structure (up to multiples) on C[x1, . . . , xn](d). It is called the Bombieri-Weyl
hermitian structure. A hermitian orthonormal basis for it is given by the monomials{(

d!

α1! · · ·αn!

)1/2

xα1
1 · · ·xαn

n

}
α1+···+αn=d

. (6.2)

The Bombieri-Weyl scalar product and the corresponding Gaussian distribution have been
widely used, see [45, 46, 74, 75, 76, 102, 109, 110, 128, 143, 149, 150, 151].

Notice that the basis in (6.2) is real and, since O(n,R) ⊂ U(n,R), the Bombieri–Weyl
scalar product restricts to a scalar product on R[x1, . . . , xn](d) which is invariant under
O(n,R). In other words, denoting by ρRn,d : O(n,R) → GL(R[x1, . . . , xn](d)) the represen-

tation by change of variables, the Bombieri-Weyl scalar product is ρRn,d-invariant. However,

since ρRn,d is not real irreducible, there are invariant scalar products which are not multiples
of this one. The classification of such scalar products has been done by Kostlan in [101]
using the theory of spherical harmonics, as follows. Denoting by Hn,ℓ ⊂ R[x1, . . . , xn](ℓ) the
space of harmonic polynomials, we have a decomposition

R[x1, . . . , xn](d) ≃
⊕

d−ℓ even

∥x∥d−ℓ · Hn,ℓ.

The spaces ∥x∥d−ℓ · Hn,ℓ are precisely the irreducible summands of ρRn,d and are isomorphic
to the spaces of spherical harmonics. Schur’s Lemma implies that there is only one invari-
ant scalar product on each of them, up to multiples, and an invariant scalar product on
R[x1, . . . , xn](d) is obtained by scaling these scalar products separately. For instance, the
L2(Sn−1) scalar product is ρRn,d-invariant but is not a multiple of the Bombieri-Weyl one (see
[73]).

6.2.2.1 Gaussian distributions on p-adic spaces

Evans [61, 66, 63, 64, 65, 68] (see also Section 1.1.4) introduced the notion of Gaussian
distribution on a p-adic vector space, as follows. To start with, one denotes by ζ1 the uniform
probability measure on the compact topological group Zp and by ζm := ζ1 × · · · × ζ1 the
product measure on Zm

p (these are just the normalized Haar measures). The measure ζm is
called the standard p-adic Gaussian measure. Then, if V ≃ Qn

p is a p-adic vector space, a
p-adic Gaussian measure is defined by assigning a surjective linear map T : Qm

p → V and
considering the pushforward measure T#ζm (notice the analogy with the real construction).
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Here the theory of nondegenerate p-adic Gaussian measures on V ≃ Qn
p is equivalent to

the theory of full dimensional lattices in V : the image of Zm
p under T is a lattice L := T (Zm

p )
in V and every lattice arise in this way. This lattice is the support of the measure T#ζm.
Given a lattice L ⊂ V ≃ Qn

p , one defines a p-adic Gaussian distribution fixing a basis
{v1, . . . , vn} for L and setting T (ej) = vj, as above (here {e1, . . . , en} is the standard basis).
A random element from this distribution is obtained by setting ξ := ξ1v1 + · · · + ξnvn,
where the ξj’s are independent uniform random variables on Zp. Gaussian distributions on
a discretely valued non-archimedean field K are constructed similarly.

Given a representation ρ : G → GL(V ), it is then natural to ask for lattices which are
invariant under this representation (or equivalently invariant under the action of the ring
and OK-module Hρ := spanR(im(ρ)) ⊂ EndK(V )); they correspond to ρ-invariant Gaussian
distributions. Unlike the real and complex setting, in the non-archimedean case, even if ρ is
irreducible, Schur’s Lemma cannot be used to conclude uniqueness in this context. That is
because non-degenerate Gaussian measures are in a one-to-one correspondence with lattices
(instead of positive non-degenerate quadratic forms as in the real case).

6.2.3 Invariant Gaussian distributions on the space of p-adic
polynomials

Evans [67] defines a probability distribution on the space of polynomials considering the
random polynomial

ζ(y) := ζ0 + ζ1

(
y

1

)
+ · · ·+ ζd

(
y

d

)
, (6.3)

where ζ0, . . . , ζd are independent and uniformly distributed in Zp. Since the aforementioned
seminal work of Evans a couple of decades ago, probabilistic problems over non-archimedean
local fields have been gaining interest in the recent years [5, 16, 28, 48, 50, 54]. In many
of these problems, it is important that the probability measure is invariant under certain
symmetries. Homogenizing the above polynomial, one gets a probability distribution on
Qp[x, y](d) which is not invariant under the action of GL(2,Zp) by change of variables. Here
GL(n,Zp) can be seen as the group of isometries of projective space Pn−1

Q (see [105]), and
it is natural to ask for a probability distribution on Qp[x1, . . . , xn](d) for which there are no
preferred points or direction for the zero sets of polynomials in projective space, as we did
for the real case.

In [105] the authors proposed an alternative model, defining a random polynomial ζ ∈
Qp[x1, . . . , xn](d) as

ζ(x) :=
∑

|α|=α1+···+αn=d

ζαx
α1
1 · · ·xαn

n , (6.4)

where {ξα}|α|=d is a family of indenendent random variables, each of them uniformly dis-
tributed in Zp. This Gaussian distribution corresponds to the lattice L ⊂ Qp[x1, . . . , xn](d)
spanned by the standard monomial basis.
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The probability distribution induced by Equation (6.4) on Qp[x1, . . . , xn](d) is invariant
under the action of GL(n,Zp) by change of variables (see [105]). It is natural to ask whether
there are other Gaussian distributions on Qp[x1, . . . , xn](d) which have this property. Our
Theorem 6.1 implies that, when p does not divide d, Equation (6.4) is the only distribution
with this property (up to scaling). In fact, this corresponds to the case λ = (d) with the
Young diagram

λ = 1 2 · · · d

More generally, the same result is true for a discretely valued non-archimedean field K:
Corollary 6.3 states that if λ is p-core, with p the residue characteristic, then there is a
unique Gaussian measure on the space Sλ(V ) ∼= K[x1, . . . , xn](d) of homogeneous polynomials
of degree d in n variables that is invariant under linear change of variables in GL(n,OK).

6.3 Supporting results

In this section, we introduce some notation, collect the necessary background. We also
prove some preliminary results we will need in Section 7.4.

6.3.1 The group GL(n,OK)

As before, let K be a non-archimedean discretely valued field with normalized valuation
val : K× ↠ Z. We denote by OK its valuation ring and we fix a uniformizer ϖ of K. We
denote by k the residue field OK/ϖOK , and ℓ, p the respective characteristics 1 of the fields
K and k. The non-archimedean valuation val induces an ultrametric absolute value | · | on
K as follows:

|x| :=

{
p− val(x), if p > 0

e− val(x), otherwise
.

There is a natural notion of non-archimedean orthogonality (see [65, Section 3] for more
details) for which the analogue of the group of orthogonal n×n matrices O(n,R) in the real
setting is the group

GL(n,OK) :=
{
g ∈ GL(n,K) : g, g−1 ∈ On×n

K

}
,

see [69, Theorem 2.4]; this group is a totally disconnected compact topological group.

1When ℓ > 0 we necessarily have p = ℓ.
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6.3.2 The Schur functor

Let V be an n-dimensional K-vector space2 spanned by a basis x1, . . . , xn. There exists
a natural linear right action of the group GL(n,OK) on V as follows

xi · g =
n∑

j=1

gij xj, g = (gij)1≤i,j≤n ∈ GL(n,OK).

This clearly defines a faithful representation ρn : GL(n,OK)→ GL(V ). Let d ≥ 1 and λ ⊢ d
a partition of d. The Schur functor Sλ maps the representation ρn to the representation ρn,λ
acting on the Weyl module Sλ(V ) defined as

Sλ(V ) := cλ · V ⊗d,

where cλ is the Young symmetrizer. For a detailed construction of the Weyl module Sλ(V )
we refer the reader to [72, Section 6.1], [71, Chapter 8] or [83, Chapter 6].

Theorem 1 in section 8.1 of [71] gives a basis of Sλ(V ) whose elements are indexed by
the Young tableaux T obtained by filling the Young diagram of λ with entries in {1, . . . , d}.
Choosing this basis as the standard basis of Sλ(V ) we get a group homomorphism

ρn,λ : GL(n,K)→ GL(N,K),

with N := dimK(Sλ(V )).

6.3.3 Lattices

Lattices in Sλ(V ) are full rank OK-submodules of Sλ(V ). The representation ρn,λ defines
a natural action of GL(n,OK) on lattices of Sλ(V ) as follows:

g · L := {g · x : x ∈ L}, as an OK-module.

In this chapter, we are interested in determining the lattices that are invariant under this
action i.e. lattices L such that

g · L = L, for all g ∈ GL(n,OK).

(Obviously, if L is ρn,λ-invariant, then aL is ρn,λ-invariant for any a ∈ K×. So, to be more
precise, we are interested in ρn,λ-invariant homothety classes of lattices.)

A central object for our study is the OK-submodule of EndK(Sλ(V )) generated by the
image of ρn,λ, which we denote by Hn,λ i.e.

Hn,λ = spanR(im(ρn,λ)).

2Note that same construction can be carried out more generally when V is an OK-module.
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The OK-module Hn,λ is also a subring of EndK(Sλ(V )). Given a lattice L in Sλ(V ), the
action of ρn,λ defines a new lattice Hn,λ · L defined as follows

Hn,λ · L =
∑

f∈Hn,λ

f · L.

The above sum (6.3.3) is finite, since we can take the sum over an OK-basis of Hn,λ. The
module Hn,λ is a torsion-free over the discrete valuation ring OK , so it is free and has a finite
OK-basis. Notice also that, since id ∈ Hn,λ we always have L ⊂ Hn,λ · L.

6.3.4 Some auxiliary results from representation theory

Given the standard basis of Sλ(V ), the representation ρn,λ maps a matrix g ∈ GL(n,K)
to a matrix ρn,λ(g) ∈ GL(N,K) wih N = dimK(Sλ(V )); the entries of the matrix ρn,λ(g) are
homogeneous polynomials of degree d in the entries of g.

Example 6.4. Suppose that n = d = 2 and

λ = 1 2

Then the space Sλ(V ) is then the second symmetric power of V = K · x1 ⊕ K · x2 i.e. the
space of homogeneous degree 2 polynomials in 2 variables

Sλ(V ) = K · x⊗21 ⊕ K · (x1 ⊗ x2 + x2 ⊗ x1) ⊕ K · x⊗22 .

The representation ρ2,λ can then be described in a matrix form as follows

ρ2,λ :

[
a b
c d

]
7→

a2 2ac c2

ab ad+ bc cd
c2 2bd d2

 .
See [122, Chapter 11] for similar explicit The ring H2,λ, in matrix form, given by

H2,λ :=
{
X ∈ R3×3 : X12, X32 ∈ 2OK

}
.

Let us recall the following result from representation theory of algebraic groups.

Theorem 6.5. Let F be a field and V a vector space over F . Suppose λ is char(F )-
core. Then the Weyl module Sλ(V ) is absolutely irreducible as a representation of the group
GL(n, F ). Moreover, the map

Φ: Sλ(V )⊗ Sλ(V )∗ → O(GL(n,K)) (6.5)

v ⊗ β 7→ (g 7→ ⟨β, ρn,λ(g) v⟩),

where Sλ(V )∗ is the dual space of Sλ(V ) and O(GL(n,K)) is the Hopf algebra of regular
functions on GL(n,K), is injective.
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Proof. When char(F ) = 0 the result can be immediately deduced from the algebraic Peter-
Weyl theorem, which states that for a reductive algebraic group G we have

O(G) =
⊕

(π,W ) irrep of G

W ⊗W ∗,

where the sum is over the irreducible representations π of G. For a reference, see [160,
Theorem 27.3.9] or [80, Theorem 12.1.4].

The positive characteristic case is known to the experts, but we could not find a precise
reference. Hence for completeness, we provide a concise proof. Let G := GL(n, F ) and
assume that λ is char(F )-core and denote by Wλ the Specht module over F associated to
λ (this is a representation of the symmetric group Sd). Since λ is a char(F )-core partition,
the Specht module Wλ is an absolutely irreducible and projective Sd-module. Then by the
Schur-Weyl duality the Weyl module Sλ(V ) ∼= HomSd

(Wλ, V
⊗d) is an absolutely irreducible

representation of G. So the division algebra D = EndG(Sλ(V )) of intertwining operators is
trivial i.e. D ∼= F and using the Jacobson density theorem we deduce that the F -linear map

F [G] ↠ EndD(Sλ(V )) = EndF (Sλ(V )), g 7→ ρn,λ(g)

is surjective, where F [G] is the free group algebra of G over F . This implies that if α ∈
EndF (Sλ(V ))∗ is a linear form with α(ρn,λ(g)) = 0 for all g ∈ G, then α(f) = 0 for f ∈
EndF (Sλ(V ) i.e. α = 0. We then conclude that the map Φ is indeed injective.

Lemma 6.6. Let A be a principal ideal domain with infinitely many units and F = Frac(A)
its field of fractions. Let φ ∈ O(GL(n, F )) be a polynomial function on GL(n,K). If φ(g) = 0
for all g ∈ GL(n,A), then φ = 0.

Proof. Suppose that φ(h) = 0 for any h ∈ GL(n,A) and that φ ̸= 0. Then there exists
g ∈ GL(n, F ) with φ(g) = 0. Since A is a principal ideal domain, we can write the Smith
normal form g = ug′v of g where u, v ∈ GL(n,A) and g′ is diagonal. So, by replacing φ with
the polynomial x 7→ φ(uxv), we may assume, without loss of generality, that g is a diagonal
matrix. Since φ(g) ̸= 0 and g is diagonal, the restriction of φ to the space of diagonal
matrices is a nonzero polynomial

ϕ(z1, . . . , zn) = φ(diag(z1, . . . , zn)) =
∑
ν∈Nn

cν z
ν1
1 . . . zνnn .

Since φ vanishes on GL(n,A) we deduce that

φ(diag(u1, . . . , un)) = ϕ(u1, . . . , un) = 0, for u1, . . . , un ∈ A×.

Since A has infinitely many units, we deduce that ϕ = 0 which is a contradiction. So, as
desired, we conclude that φ = 0.
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Remark 6.7. The statement of Lemma 6.6 clearly fails when A is a domain with finitely
many units. For example if OK = Z, the function g 7→ (det(g)− 1)(det(g) + 1) vanishes on
GL(n,Z) but not on GL(n,Q).

Proposition 6.8. If λ is ℓ-core, the OK-module Hn,λ spans EndK(Sλ(V )) over K.

Proof. Suppose that λ is ℓ-core and assume that Hn,λ does not span EndK(Sλ(V )). Then
there exists a non-zero linear form α ∈ EndK(Sλ(V ))∗ such that

α(f) = 0, for all f ∈ Hn,λ. (6.6)

Equivalently, we then have α(ρn,λ(g)) = 0 for all g ∈ GL(n,OK). Then, by virtue of
Lemma 6.6 we deduce that

α(ρn,λ(g)) = 0, for all g ∈ GL(n,K).

Here we are extending ρn,λ in the obvious way and using the fact that GL(n,OK) is an open
set in GL(n,K). Identifying EndK(Sλ(V ))∗ with Sλ(V )⊗Sλ(V )∗ in the canonical way, (6.6)
can then be rewritten as Φ(α) = 0. But, since Φ is injective by virtue of Theorem 6.5, we
deduce that α = 0 which is a contradiction. Hence Hn,λ spans End(Sλ(V )) over K.

Remark 6.9. In the language of Chapter 6, when Hn,λ spans EndK(Sλ(V )), we say that
Hn,λ is an order in EndK(Sλ(V )) i.e. a OK-module of full rank that is also a ring.

6.4 Proofs of main results

6.4.1 Irreducibility of Schur representations

In this section we prove the following result, giving a sufficient condition for the irre-
ducibility of (ρn,λ, Sλ(V )). Recall that, a representation ρ : G → GL(V ) is said to be
irreducible if it has no proper invariant subspace.

Theorem 6.10. If λ is ℓ-core, then the representation (ρn,λ, Sλ(V )) of the group GL(n,OK)
is irreducible.

Proof. Suppose that λ is ℓ-core and assume that there is a proper subspace W ⊂ Sλ(V )
which is ρn,λ–invariant; that is

ρn,λ(g)(W ) ⊂ W, for all g ∈ GL(n,OK).

But, since W is a proper subspace of Sλ(V ), the linear space

Stab(W ) := {f ∈ EndK(Sλ(V )) : f(W ) ⊂ W} ,

is a proper subspace of EndK(Sλ(V )). Since ρn,λ(g) ∈ Stab(W ) we deduce that Hn,λ ⊂
Stab(W ). By virtue of Proposition 6.8, this is a contradiction. So we deduce that ρn,λ is an
irreducible representation of GL(n,OK).
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6.4.2 Invariant lattices: the fixed point set in the Bruhat-Tits
building

Recall that the action of GL(n,OK) on Sλ(V ) induces an action on the building Bn,λ i.e.
we have a group homomorphism

ρBn,λ : GL(n,OK)→ Aut(Bn,λ),

sending GL(n,OK) to the group of automorphisms of the building Bn,λ. We denote by
Fix(ρBn,λ) the set of 0-simplices of Bn,λ that are fixed under ρBn,λ i.e.

Fix(ρBn,λ) := {[L] : [L] = ρBn,λ(g)([L]) for all g ∈ GL(n,OK)}.

Passing to the quotient modulo ϖ, the representation ρn,λ of GL(n,OK) naturally induces
the representation

ρn,λ : GL(n, k)→ GL(Sλ (L0/ϖL0)),

where L0 := OK · x1 ⊕ · · · ⊕ OK · xn. The following result is our main theorem.

Theorem 6.11. Suppose that λ is ℓ-core. Then the set Fix(ρBn,λ) is a non-empty finite convex
set in the building Bn,λ (in the sense of Section 1.2 and Chapter 5). Moreover, if λ is p-core,
the set Fix(ρBn,λ) is reduced to the one point

Fix(ρBn,λ) = {[Sλ(L0)]} ,

with L0 := OK · x1 ⊕ · · · ⊕ OK · xn.

Proof. The lattice Λ0 = Sλ(L0) is always ρn,λ-invariant so [Λ0] ∈ Fix(ρBn,λ). If Λ1,Λ2 are two
ρn,λ-invariant lattices then Λ1 + Λ2 and Λ1 ∩ Λ2 are also ρn,λ-invariant so we deduce that
Fix(ρBn,λ) is convex in Bn,λ.

Now suppose that λ is ℓ-core. Then, by virtue of Proposition 6.8, the OK-module Hn,λ is
an order in EndK(Sλ(V )). Hence there exists an integer r > 0 such that id +ϖr EndOK

(L0) ⊂
Hn,λ. By virtue of Theorem 5.61, the set of points in Bn,λ that are invariant under the ball
order id +ϖr EndOK

(Λ0) is exactly the ball B([Λ0], r) of center Λ0 and radius r in the building
Bn,λ which is finite, so Fix(ρBn,λ) ⊂ B([Λ0], r) is finite.

Now assume further that λ is p-core and assume that there is a neighbor [Λ1] of [Λ0] in
Bn,λ; that is

ϖΛ0 ⊊ Λ1 ⊊ Λ0,

such that [Λ1] ∈ Fix(ρBn,λ). Then W = Λ1/ϖΛ0 is a proper ρn,λ-invariant subspace of
Λ0/ϖΛ0 = Sλ(L0/ϖL0). But since λ is p-core, by virtue of Theorem 6.5, the representation
ρn,λ is irreducible so this is a contradiction. We then deduce that no neighbour of [Λ0] in
Bn,λ is ρn,λ-invariant. Finally, since Fix(ρBn,λ) is convex in Bn,λ, we conclude that Fix(ρBn,λ) =
{[Λ0]}.
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6.4.3 Proof of Corollary 6.3

Let P be a GL(n,OK)-invariant Gaussian measure on Sλ(V ) (in the sense of Section 1.1.4).
Let Λ := supp(P) be the OK-submodule of Sλ(V ) that is the support of P (see [65, Section
4]). Then since P is GL(n,OK)-invariant, the module Λ is GL(n,OK)-invariant hence also
Hn,λ-invariant. Assume that λ is p-core, then by virtue of Proposition 6.8 Hn,λ is an order.
Hence either Λ = 0 or Λ = Hn,λ ·Λ has full rank in Sλ(V ). Assuming Λ ̸= 0, i.e. the measure
P is not the Dirac measure at 0, we deduce that Λ is a GL(n,OK)-invariant lattice in Sλ(V ).
Then using Theorem 6.11 we deduce that [Λ] = [Λ0] which finishes the proof.

6.5 Concluding remarks and open questions

6.5.1 An example of unbounded Fix(ρn,λ)

In the case where λ is not ℓ-core (which implies that p = ℓ), the set Fix(ρn,λ) is still
convex but can be unbounded in the building Bn,λ.

Example 6.12. Assume that K is a local field of characteristic 2 (for example the field of
Laurent series F2((ϖ))). For any integer m ≥ 0 let Lm be the following lattice

Lm = OK · x2 ⊕OK · y2 ⊕ϖmOK · xy,

in the space of homogeneous polynomial S2,(2)(V ) ∼= K[x, y](2). For α, β, γ ∈ OK , and

g =

(
a b
c d

)
∈ GL(2,OK) notice that

(αx2 + βy2 + γϖmxy) · g = α(ax+ by)2 + β(cx+ dy)2 + γϖm(ax+ by)(cx+ dy)

= (αa2 + βb2 + γϖmac)x2 + (αc2 + βd2 + γϖmbd)y2

+ γϖm(ad+ bc)xy.

So we deduce that g ·Lm ⊂ Lm for any g ∈ GL(2,OK). Since the action of GL(2,OK) is
measure preserving we deduce that g · Lm = Lm for any such g. So Fix(ρ2,(2)) is unbounded
in B2,(2) since it contains the homothety class [Lm] for m ≥ 0.

Notice also that the representation ρ2,(2) is not irreducible (since the space W spanned
by x2, y2 is ρ2,(2)-invariant) nor semisimple (the space W has no GL(2, K)-invariant comple-
ment).

6.5.2 Computing Fix(ρn,λ) for small residue characteristics

In this section we focus on the mixed characteristic case when ℓ = 0 and λ is not p-core.
In this case, we know that Fix(ρBn,λ) is a finite convex set in Bn,λ and we are interested in
computing lattices in Fix(ρBn,λ) (up to scaling).
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Conjecture 6.13. Let N = dimK(Sλ(V )) and suppose that ℓ = 0. We conjecture that
the order Hn,λ is a graduated order in the sense of Chapter 5; in other words there exists a
matrix M = (mij) ∈ ZN×N with

1. mii = 0 for any 1 ≤ i ≤ N ,

2. mij ≤ mik +mkj for any 1 ≤ i, j, k ≤ N ,

such that the order Hn,λ (in matrix form given the standard basis of Sλ(V )) is given by

Hn,λ = ΛM := {X ∈ KN×N : Xij ∈ ϖmijOK}.

When Hn,λ is a graduated order, the set Fix(ρn,λ) is a polytrope that lies in one apartment
of the building Bn,λ and can be fully determined from the matrix M (see Corollary 5.13).

Example 6.14. Assume that ℓ = 0 and p = 2 (this is the case for example whenever K is
a finite field extension of Q2). In Example 6.4, the order H2,(2) in matrix form is ΛM with

M =

0 1 0
0 0 0
0 1 0

 .

So by virtue of Corollary 5.13 we deduce that Fix(ρ2,(2)) consists of two points

[S(2)(OK · x1 ⊕OK · x2)] and [ϖOK · x⊗21 ⊕ OK · (x1 ⊗ x2 + x2 ⊗ x1) ⊕ ϖOK · x⊗22 ].

Remark 6.15. In the equal characteristic ℓ = p, the set Fix(ρn,λ) is either reduced to one
point (when λ is ℓ-core) or is unbounded in Bn,λ (when λ is not ℓ-core).

6.5.3 Other compact group actions

In addition to the action of GL(n,OK) on the Bruhat-Tits building Bn,λ, one could
study the action of closed subgroups of GL(n,OK). The groups SL(n,OK), SO(n,OK)
and the symmetric group Sn are of particular interest. One might suspect that the same
results proven in this chapter hold also for SL(n,OK). For SO(n,OK) the representation
(ρn,λ, Sλ(V )) will no longer be irreducible and we suspect that it decomposes into a sum of
irreducible representations in a similar way3 it does over the real numbers for SO(n,R). The
set of fixed lattices for SO(n,OK) will then be unbounded, as will be the case for Sn (see
Example 2.31). It would be interesting to describe what these convex sets look like in the
building.

3Because a linear space being stable under a polynomial group action is a purely algebraic fact.
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Chapter 7

Tropical invariants for binary quintics
and reduction types of Picard curves

This chapter is based on joint work [49] with Paul A. Helminck and Enis Kaya. We
express the reduction types of Picard curves in terms of tropical invariants associated to
binary quintics. We furthermore give a general framework for tropical invariants associated
to group actions on arbitrary varieties. The problem of describing reduction types of curves
in terms of their associated invariants fits in this general framework by mapping the space
of binary forms to symmetrized versions of the Deligne–Mumford compactification M0,n.

7.1 Introduction

Invariant theory studies quantities in geometry that are invariant under group actions.
This theory sparked many developments in commutative algebra, leading to the Hilbert ba-
sis theorem and many other results. In this chapter, we study invariants of binary forms
f(x, z) = a0x

n + a1x
n−1z + · · · + anz

n defined over an algebraically closed field K of char-
acteristic 0. The group in question is GL(2, K) and it acts on these binary forms through
Möbius transformations ; that is

fσ(x, z) = f(ax+ bz, cx+ dz), for σ =

(
a b
c d

)
∈ GL(2, K).

By comparing the entries of f to those of fσ, this then also gives an action of GL(2, K) on
K[ai]. The invariants for this action are homogeneous polynomials H in the ai such that
Hσ = det(σ)kH for some k. By Hilbert’s basis theorem, these form a finitely generated
subring of K[ai] called the ring of invariants. There are algorithms that can explicitly calcu-
late the generators of this ring and a full list of generators is known for binary forms of low
degrees, see [154]. These generators satisfy the pleasant property that two separable binary
forms are projectively equivalent if and only if the values of the generators are projectively
equivalent. This gives a strong connection between algebra on the one hand and geometry
on the other.
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We now turn to the non-archimedean side of this story and consider a complete non-
archimedean algebraically closed field K of characteristic zero with non-trivial valuation
v : K∗ → R. Let f(x, z) be a separable binary form of degree n over K. The zeroes of
this form give a canonical metric tree on n leaves by connecting the corresponding points
in the Berkovich analytification of P1. There are only finitely many phylogenetic types for
any given degree n (see Figure 7.1 for the case n = 5), and the possible types give rise to
a partition of the space of all non-archimedean binary forms of degree n. Since the tree is
invariant under projective isomorphisms, this also partitions the space of all invariants. A
natural question now arises: what are the equations for these partitions?

Type I Type II Type III

Figure 7.1: The three types of unmarked phylogenetic trees with 5 leaves

There are two instances where we know the equations: n = 4 and n = 6. For n = 4
there are two tree types: a trivial one with four leaves connected to a single vertex and a
non-trivial one. We can distinguish between these two using the valuation of the j-invariant
of the quartic. Namely, a quartic has trivial tree type if and only if val(j) ≥ 0, see [152,
Chapter VII]. For n = 6, there are seven tree types and one can distinguish between them
using the valuations of Igusa invariants, see [115] and [89]. Our main goal in this chapter is
to fill up this gap and find the invariants for binary quintics, that is, for n = 5.

For quintics, there are three tree types; see Figure 7.1. We wish to distinguish between
these tree types using the valuations of suitable invariants. To that end, we start with a set
of generators I4, I8, I12, I18 for the ring of invariants together with the discriminant ∆. The
valuations of these invariants are not sufficient to determine the tree type of the quintic (see
Example 7.27), so we introduce a new invariant H, giving the set S = {I4, I8, I12, I18,∆, H}.
In our first theorem, we show that the valuations of these invariants determine the tree
type of a quintic. We call the valuations of these invariants the tropical invariants of the
quintic. For technical reasons, we assume for the remainder of this section that the residue
characteristic p of K is not equal to 2, 3, 11. Note however that Remark 7.28 explains how
to deal with the case where p = 11.

Theorem 7.1 (Tree types of binary quintics). Let f be a separable binary quintic over K.
Then, the tree type of f is determined by the tropical invariants as follows:

(I) The tree is of Type I if and only if 8 val(I)− deg(I) val(∆) ≥ 0 for all I ∈ S.

(II) The tree is of Type II if and only if val(∆)− 2 val(I4) > 0 or 9 val(∆)− 4 val(I18) > 0,
and 12 val(I)− deg(I) val(H) ≥ 0 for all I ∈ S.
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(III) The tree is of Type III if and only if val(∆)− 2 val(I4) > 0 and val(H)− 3 val(I4) > 0.

Finding the equations for n = 4 and n = 6 is partially motivated by applications to
reduction types of hyperelliptic curves. For n = 5, the motivation comes from Picard curves
X, which are smooth plane quartics of the form

y3ℓ(x, z) = q(x, z),

where deg(ℓ(x, z)) = 1 and deg(q(x, z)) = 4. We are interested in obtaining the minimal
skeleton of the Berkovich analytification of such a curve, which codifies the different possible
semistable models for X. The results in [87] show that this skeleton can be recovered from
the marked tree type of the quintic f(x, z) = ℓ(x, z) · q(x, z). More precisely, this quintic
has five distinct roots, giving a metric tree with five leaves, and the root of ℓ(x, z) gives
the marking. We can assume by a projective transformation that this marked point is ∞.
There are exactly five marked tree types, see Figure 7.2, giving rise to five reduction types of
Picard curves. In terms of invariant theory, the natural object to consider here is the binary
(4, 1)-form (q(x, z), ℓ(x, z)). These binary (4, 1)-forms similarly have a finitely generated
ring of invariants and in our second theorem we show that we can find a set of invariants for
(4, 1)-forms that distinguish between the five marked tree types. This set consists of the set
S from Theorem 7.1 together with a new set S ′ = {j2, j3, j5, j6, j9} of (4, 1)-invariants. As
above, we call the valuations of these invariants the tropical invariants of the (4, 1)-form.

∞

Type I

∞

Type II.1

∞

Type II.2

∞

Type III.1

∞

Type III.2

Figure 7.2: Tree types of binary (4, 1)-forms

Theorem 7.2 (Tree types of (4, 1)-forms). Let (q, ℓ) be a (4, 1)-form over K such that
the associated binary quintic f = q · ℓ is separable. The tree type of (q, ℓ) is determined by
the tropical invariants as follows:

(I) If f has tree Type I, then (q, ℓ) also has Type I.
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(II) If f has tree Type II, then (q, ℓ) has Type II.1 (resp. Type II.2) if and only if the
quantity 5 val(j2)− 2 val(j5) is strictly positive (resp. zero).

(III) If f has tree Type III, then (q, ℓ) has Type III.1 (resp. Type III.2) if and only if the
quantity 5 val(j2)− 2 val(j5) is strictly positive (resp. zero).

To determine the skeleton of a Picard curve, we also need to know the associated weights
and edge lengths. The weights of the skeleton are completely determined by Theorem 7.2,
but the lengths are not. In our third theorem, we give formulas for the edge lengths of a
(4, 1)-form in terms of its tropical invariants. For trees of Type II and Type III.2, we are
able to give these in terms of invariants of quintics. For trees of Type III.1, we express the
marked edge lengths in terms of (4, 1)-invariants. This difference is quite natural, since there
is a natural symmetry on trees of Type III.2.

Theorem 7.3 (Edge lengths). The non-trivial edge lengths of the trees in Theorem 7.2
are given by the tropical invariants as follows:

(I) If f has Type I, then there are no non-trivial edges.

(II) If f has Type II, then there is only one edge e1. Its length, both in the cases of unmarked
and marked trees, is given by

L(e1) = max

(
1

2
(val(∆)− 2 val(I4)),

1

3
(2 val(∆)− val(I18))

)
.

(III) If f has Type III, then there are two edges e1 and e2. Assume the length of e1 is less
than or equal to that of e2. The unmarked edge lengths are given by

L(e1) = min

(
1

2

(
val(I18)−

9

2
val(I4)

)
,
1

4
(val(∆)− 2 val(I4))

)
,

L(e2) = val(∆)− 2 val(I4)− 2L(e1).

(7.1)

If (q, ℓ) has Type III.1, then we write e1 for the edge adjacent to the marked point and
e2 for the other edge. The edge lengths are then given by

L(e1) =
1

10
(5 val(j2)− 2 val(j5)),

L(e2) =
1

2
(val(∆)− 2 val(I4))− L(e1).

For trees of Type III.2, they are as in (7.1).

Combining these theorems, we then immediately obtain a description of the reduction
types of Picard curves in terms of quintic and (4, 1)-invariants.
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∞

3

Type I

∞

1

Type II.1

∞

1 2

Type II.2

∞

1

Type III.1

∞

1 1 1

Type III.2

Figure 7.3: Reduction types of Picard curves

Corollary 7.4 (Reduction types of Picard curves). The reduction type of the Picard curve
y3ℓ(x, z) = q(x, z) is completely determined by the tropical invariants of the (4, 1)-form (q, ℓ).
The tree types given in Figure 7.2 correspond to the reduction types in Figure 7.3.

We thus obtain a description of the moduli space of tropical Picard curves in terms of
invariants of quintics and (4, 1)-forms. The work in [31] shows that these invariants in fact
give rise to Picard modular forms. This is completely analogous to the cases n = 4 and n = 6
mentioned above. For instance, for n = 4 we have the invariants c4 and c6 corresponding
to Eisenstein modular forms for SL(2,Z). The j-invariant is a rational function in terms
of these modular forms and the classical criterion an elliptic curve E has (potential) good
reduction if and only if its j-invariant is non-negative expresses the tropical moduli space in
terms of these modular forms. For n = 6 the Igusa invariants similarly give rise to modular
forms (see [78, Section 6]) and the criteria given in [115] and [89] again express the tropical
moduli space in terms of modular forms. We view our results as extensions of those for
Picard curves.

The results obtained in this chapter can be seen as a natural continuation of [115] and
[89]. In the first, criteria for the seven reduction types of curves of genus two were given
in terms of the Igusa invariants. In [89], this result was extended to arbitrary complete
non-archimedean fields and an easier proof was given. This chapter in turn was based on
[87], where skeleta of general superelliptic curves are studied. In the latter, it was shown
that one can recover the skeleton from tropicalizations of certain functions in the coefficients
of f(x). The key difference between this chapter and the latter is that the functions we give
here are projective invariants of binary forms. This can be used to interpret the criteria in
terms of Picard modular forms, giving a stronger connection to various moduli spaces in the
literature.

We also define a general notion of a set of tropical invariants using tools from non-
archimedean geometry. A notion that seems distantly related to this one appears in [99],
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where spherical varieties and invariant valuations are studied. We do not restrict ourselves
to spherical varieties, as we can phrase everything in terms of G-invariant subsets of the
analytification of an algebraic variety for some group G. This removes any reliance on
auxiliary objects such as Gröbner bases or graded algebras.

From a geometric point of view, our chapter fits into the literature as follows. Suppose
that we have a group action on a variety that admits a geometric quotient. This quotient
admits many possible compactifications and for every compactification we obtain a natural
definition of a tropical invariant. For instance, for separable binary forms we can compactify
the space using either stable binary forms (see [127]) or the symmetrized Deligne–Mumford
compactification M0,n/Sn. We are mostly interested in the latter, since this has direct
applications to reduction types of Picard curves. That is, if we write N for the space
of admissible Z/3Z-coverings with ramification signature (4, 1), then there is a natural map
N →M0,5/S4×S1 sending a covering to its branch locus and this map respects the boundary
loci. Recent work by Cléry and van der Geer [31] shows that this map can be used to
connect (4, 1)-invariants to Picard modular forms, mirroring the classical case of elliptic
curves. For future work, it would be interesting to see how tropical invariants of binary
forms are connected to other moduli spaces.

Several results in this chapter were found or proved by symbolic computations. The codes
and computations (implemented in SageMath [142]) are made available at

https://mathrepo.mis.mpg.de/TropicalInvariantsPicardCurves/index.html. (7.2)

This chapter is organized as follows. In Section 7.2, we review some background on
invariant theory for binary forms and Picard curves. Section 7.3 introduces and discusses
the notion of tropical invariants. Finally, we prove our main results, and in particular discuss
the edge lengths (or thickness of singular points), in Section 7.4.

7.2 Background

In this section, we review the necessary background and preliminaries on invariant theory
for binary forms and (4, 1)-forms. We also recall some notions on Picard curves.

We start by recalling some facts and results from invariant theory of binary forms. For
detailed treatments of invariant theory, we refer the reader to [154, 37, 135]. Fix an alge-
braically closed field K such that char(K) = 0.

Let n ≥ 0 be a fixed integer. Let A = K[a0, . . . , an] be the polynomial ring in n + 1
variables. We view A as a graded ring with the standard grading deg(ai) = 1. Let Vn be the
A-submodule of A[x, z] consisting of homogeneous polynomials in x and z of total degree n.
The reductive group G := SL(2, K) acts (as a right action) on the A-module Vn as follows:

gσ(x, z) := g(ax+ bz, cx+ dz), for g ∈ Vn and σ =

[
a b
c d

]
∈ G.

https://mathrepo.mis.mpg.de/TropicalInvariantsPicardCurves/index.html


CHAPTER 7. TROPICAL INVARIANTS AND PICARD CURVES 148

Definition 7.5. We define the universal binary form f of degree n over K as the binary
form given by

f(x, z) = a0x
n + a1x

n−1z + · · ·+ anz
n ∈ Vn.

A binary form over K of degree n is obtained by specializing the coefficients to K.

We obtain an action of G on A by sending ai to the coefficient ci(f
σ) of xn−izi in fσ for

0 ≤ i ≤ n. This means that G acts on A as follows:

F σ(a0, . . . , an) := F (c0(f
σ), . . . , cn(fσ)), for F ∈ A and σ ∈ G. (7.3)

Example 7.6. When n = 2, from the definition

fσ(x, z) = f(ax+ bz, cx+ dz), for σ =

[
a b
c d

]
∈ G

we get (see also Example 6.4):c0(fσ)
c1(f

σ)
c2(f

σ)

 =

 a2 ac c2

2ab ad+ bc 2cd
b2 bd d2

a0a1
a2

 .
We can then see how σ acts on the generators a0, a1, a2 of A = K[a0, a1, a2] and we have

aσ0 = a2a0 + aca1 + c2a2, aσ1 = 2aba0 + (ad+ bc)a1 + 2cda2 and aσ2 = b2a0 + bda1 + d2a2.

Definition 7.7. A binary form is said to be separable if its discriminant does not vanish. A
homogeneous polynomial F ∈ A is called G-invariant if

F σ = F, for all σ ∈ G.

We denote the graded ring generated by all homogeneous G-invariant polynomials by AG.

Remark 7.8. Notice that GL(2, K) acts on A as in Equation (7.3), and since K is alge-
braically closed, a homogeneous polynomial F ∈ A is SL2-invariant if and only if for any
σ ∈ GL2 we have

F σ = det(σ)deg(F )F.

We say that a homogeneous polynomial F ∈ A is GL2-invariant if it satisfies the identity
above. This immediately implies that the ring of invariants for GL2 and SL2 are the same.
We will use these interchangeably.

Since G = SL(2, K) is reductive, it is a well known fact from invariant theory that the ring
AG is finitely generated over K; see, for example, [37, Corollary 2.2.11]. To find generators
of AG we can use the notion of transvectants, or Überschiebung , which we explain briefly
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here. Let g ∈ Vm and h ∈ Vn with m ≥ n and let r be an integer with 0 ≤ r ≤ n. We define
the bilinear map

⟨·, ·⟩r : Vm × Vn −→ Vm+n−2r, (g, h) 7→
r∑

i=0

(−1)i
(
r

i

)
∂rg

∂r−ix ∂iz

∂rh

∂ix ∂r−iz
.

It turns out that this map is G-invariant, i.e.,

⟨gσ, hσ⟩r = ⟨g, h⟩r, for (g, h) ∈ Vm × Vn and σ ∈ G.

The quantity ⟨g, h⟩r is called the r-th transvectant of g and h. Notice that when n = m = r,
the transvectant ⟨g, h⟩r has degree 0 in x, z so ⟨g, h⟩r ∈ AG. A theorem by Gordan [81]
shows that one can obtain all invariants by taking (iterated if necessary) transvectants, so
this makes the set generators of AG explicit, at least in theory. In practice, the generators
have only been found for binary forms of degrees up to 10; see [135, Chapter 1] or [37,
Example 2.1.2].

Example 7.9. 1. For binary quadrics the invariant ring AG is generated by ⟨f, f⟩2, which
is equal to the discriminant of f .

2. For binary cubics, the invariant ring is again generated by the discriminant

∆ = ⟨⟨f, f⟩2, ⟨f, f⟩2⟩2.

3. For binary quartics n = 4, the invariant ring AG is generated by two algebraically inde-
pendent invariants I2 and I3 of degrees 2 and 3 respectively. In terms of transvectants,
they are given by

I2 = ⟨f, f⟩4 and I3 = ⟨f, ⟨f, f⟩2⟩4.

4. For binary quintics, the invariant ring AG is generated by four generators I4, I8, I12 and
I18 of degrees 4, 8, 12 and 18, respectively. These are not algebraically independent,
as I218 can be expressed in terms of the other three. We refer the reader to Section 7.2
for a more detailed exposition in this case.

Now that we have introduced some basics of invariant theory, let us focus on GL2-
invariants of binary forms. As discussed in Example 7.9, the ring of invariants for quintic
binary forms is generated by four elements I4, I8, I12 and I18 of degrees 4, 8, 12 and 18,
respectively. Let f be the universal quintic

f(x, z) = a0x
5 + a1x

4z + a2x
3z2 + a3x

2z3 + a4xz
4 + a5z

5.

The four invariants I4, I8, I12 and I18 can be obtained by taking transvectants of powers of
f in the following way:

I4 = ⟨f 2, f 2⟩10, I8 = ⟨f 4, f 4⟩20,
I12 = ⟨f 6, f 6⟩30, I18 = ⟨⟨f 5, f 6⟩10, f 7⟩35.

(7.4)
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Note that these transvectants are different from the ones considered in [135, Section 4.4]1.
They still yield generators however, as one easily checks using the Poincaré series. The
discriminant ∆ of f can be expressed in terms of the previous invariants as

∆ = c0I
2
4 + c1I8 (7.5)

where c0, c1 are the constants

c0 = −1/2746158938062848000000, c1 = 1/46987474647852089270599680000000.

Note that deg(∆) = 8.
In Section 7.3, we will assume that K is a complete non-archimedean field and associate

a metric tree to a binary form over K. This tree is invariant under the action of GL2. For
quintics, there are three different types, see Figure 7.1. The invariants I4, I8, I12, I18 and the
discriminant ∆ are however not enough to distinguish between the different types, as we
will see in Example 7.27. In order to distinguish tree types, we need to introduce another
invariant, which we call the H-invariant.

Definition 7.10. The H-invariant of the quintic f = a0x
5 + a1x

4z + · · · + a5z
5 is defined

as follows:
H = βI12 − 396α3I34 , (7.6)

where α and β are given by

α = 2−17 · 3−7 · 5−3 · 7−1,
β = 2−50 · 3−27 · 5−14 · 7−7 · 11−4 · 13−3 · 17−1 · 19−1 · 23−1 · 29−1.

This invariant is of degree 12 and constructed to satisfy the following property:

H(0, 0, 1, 0, a4, a5) is equal to the discriminant of the cubic x3 + a4x+ a5.

The motivation behind creating this invariant is as follows. For binary quintics, there are
three unmarked tree types, see Figure 7.1. For the two non-trivial ones, we choose a non-
trivial vertex of valency two. By applying a projective linear transformation, we can ensure
that the roots are grouped as {∞, λ1} and {0, 1, λ2}. The leading coefficients of the corre-
sponding binary form have positive valuation, so it will reduce to a cubic. The discriminant
of this cubic then distinguishes between the two remaining types.

Now we shift gears to discuss invariants of (4, 1)-forms. Let B = K[b0, . . . , b4, c0, c1]
be a polynomial ring. For an integer n ≥ 0, we denote by Wn the space of homogeneous
polynomials in B[x, z] of degree n. Here, we are interested in (4, 1)-binary forms, which
are the elements (q, ℓ) of W4 ⊕W1. There is a natural group action of G = SL(2, K) on
(4, 1)-forms as follows

(q(x, z), ℓ(x, z))σ = (qσ(x, z), ℓσ(x, z)) = (q(σ(x, z)), ℓ(σ(x, z))).
1The universal binary form used in the literature is of the shape f =

∑n
j=0

(
n
j

)
ajx

n−jzj . In this chapter

we use f =
∑n

j=0 ajx
n−jzj , since in our fieldK some binomial coefficients

(
n
j

)
might have a positive valuation.

Since char(K) = 0, the invariant theory remains unchanged.
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Definition 7.11. We define the universal (4, 1)-form (q, ℓ) as

q(x, z) = b0x
4 + b1x

3z + · · ·+ b4z
4 and ℓ(x, z) = c0x+ c1z.

The action of G on (q, ℓ) defines an action of G on B where σ ∈ G acts on B by
sending b0, . . . , b4, c0, c1 to the coefficients of (q, ℓ)σ. We denote by BG the ring of G-invariant
polynomials in B. This ring is again finitely generated since G is reductive. It has 5
generators j2, j3, j5, j6 and j9 of respective degrees 2, 3, 5, 6 and 9, and they can be obtained
using transvectants as follows:

j2 = ⟨q, q⟩4, j3 = ⟨⟨q, q⟩2, q⟩4,
j5 = ⟨q, ℓ4⟩4, j6 = ⟨⟨q, q⟩2, ℓ4⟩4,
j9 = ⟨⟨q, ⟨q, q⟩2⟩1, ℓ6⟩6.

(7.7)

We refer the reader to [135, Section 5.4.1] for more details. See also Equation (7.2) for
explicit formulas for all the invariants.

The invariants I4, I8, I12, I18,∆, H for binary quintics and the invariants j2, j3, j5, j6, j9
for (4, 1)-forms are polynomials with rational coefficients. Scaling these invariants, we may
assume that their coefficients are integer and are coprime; recall that char(K) = 0. The
reason behind this is that we are working with a valued field K in which integer scalars
might have a positive valuation. This justifies the following assumption:

Assumption 7.12. We scale all the invariants so that their coefficients are coprime integers,
and we do not change the notation. These scaled invariants are computed in (7.2), and are
the ones used in our results.

Write B4,1 = B for the coefficient ring corresponding to (4, 1)-forms and B5 for the
coefficient ring corresponding to quintics. The universal (4, 1)-form (q, ℓ) gives a canonical
quintic f = q · ℓ. From this, we obtain an injective ring homomorphism

B5 → B4,1.

This ring homomorphism is G = SL(2, K)-equivariant, so we obtain an induced injective
ring homomorphism

BG
5 → BG

4,1

of invariants. We identify BG
5 with its image, so that we have an inclusion BG

5 ⊂ BG
4,1. The

invariants I4, I8, I12 and I18 for the quintic f = qℓ can then be expressed in terms of the ji
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explicitly as follows:

I4 =
2

3
j2j6 −

1

2
j3j5,

I8 =
14

9
j22j

2
6 +

22

27
j32j

2
5 +

5

27
j23j

2
5 −

14

9
j2j3j5j6,

I12 =
4400

243
j32j

3
6 −

11

243
j23j

3
6 −

242

9
j22j3j5j

2
6 +

2479

81
j42j

2
5j6 +

692

81
j2j

2
3j

2
5j6

+
7156

243
j32j3j

3
5 −

92

243
j33j

3
5 ,

I18 = −625

729
j62j

3
5j9 −

512

729
j32j

2
3j

3
5j9 −

4

729
j32j3j

3
6j9 +

1

729
j33j

3
6j9 +

1

3
j42j3j

2
5j6j9

+
4

243
j52j5j

2
6j9 −

1

243
j22j

2
3j5j

2
6j9.

(7.8)

For ∆ and H, we use Equations (7.5) and (7.6).
Finally, we summarize the invariants used in Theorems 7.1, 7.2 and 7.3, and their respec-

tive degrees as follows:

Invariant I4 I8 I12 I18 ∆ H
Degree 4 8 12 18 8 12

Invariant j2 j3 j5 j6 j9
Degree 2 3 5 6 9

Table 7.1: Invariants of binary quintics (on the left) and (4,1)-forms (on the right) together
with their degrees.

7.2.1 Picard curves

Let K denote a field of characteristic 0. A Picard curve X over K is a smooth projective
curve of genus 3 in P2 given by an equation of the form

y3ℓ(x, z) = q(x, z),

where q and ℓ are homogeneous polynomials of degrees 4 and 1 respectively in K[x, z]. Here
the smoothness of X is equivalent to the separability of the quintic q(x, z) · ℓ(x, z). For a
Picard curve, the five distinct roots of this quintic are the branch points of the Z/3Z-covering
of P1 induced by the rational map

π : X P1, [x : y : z] 7→ [x : z].

Either using the fact that X is smooth or an explicit computation, we find that it gives a
morphism, so that it is defined everywhere. The Galois group of π is G = Z/3Z and it acts as
follows on X. Let ζ ∈ K be a primitive third root of unity. There is then an automorphism

α : [x : y : z] 7→ [x : ζy : z]
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of order three and the quotient map X → X/⟨α⟩ = P1 is π. For each of the five points Pi in
the zero set of the quintic q(x, z) · ℓ(x, z), there is a unique point Qi lying over Pi. The four
points Q1,. . . ,Q4 corresponding to the quartic q(x, z) differ from the remaining point Q5 in
the sense that α acts by ζ on the tangent spaces of Q1,. . . ,Q4 and as ζ2 on the tangent space
of Q5. This gives a second, and equivalent, definition of a Picard curve as a Z/3Z-covering
of P1 branched over five points with a specified action of Z/3Z on the tangent spaces of
the ramification points; see [3]. This rigidification can also be given in terms of differential
forms, see [31, Section 5].

7.3 Tropical invariants for general group actions

In this section, we define the notion of a set of tropical invariants for general group actions.
The main underlying idea is that they separate orbits that have the same limit points in
some toric compactification. For binary forms, this gives us the notion of a set of tropical
invariants. For Picard curves, there are two interesting types of binary forms: quintics and
(4, 1)-forms. We will see in Section 7.4 that we can give a tropical set of invariants for these
forms.

We assume throughout this section that K is a complete, non-archimedean and alge-
braically closed field K of characteristic 0 with valuation ring OK and residue field k.

7.3.1 Compactifications and tropicalizations

Let U be an irreducible variety over K with Berkovich analytification Uan. We can define
tropical separating sets for partitions of subsets of Uan as follows.

Definition 7.13. Let Uan ⊃ S =
⊔
Si be a partition of a subset S of Uan into disjoint

subsets and let ϕ : U → X(∆) be an embedding of U into a toric variety X(∆) with fan
∆. We say that ϕ is separating for the partition if trop(ϕ(Si)) ∩ trop(ϕ(Sj)) = ∅ for i ̸= j,
where trop(·) is the natural tropicalization map associated to the toric variety X(∆). If the
embedding is given by the global sections of a line bundle on U and ϕ is separating for a
partition, then we call the sections a tropical separating set for the partition. If the sections
of the line bundle give a morphism to X(∆) = P(a1, . . . , an), then we say that they are a
projective tropical separating set.

Example 7.14. If we take S = {P1} ∪ {P2} for two points P1, P2 ∈ Uan, then the proof of
[131, Theorem 1.1] shows that we can find an embedding that separates these points.

The partitions of Uan we are interested in are given using compactifications of U as
follows. Let X → Spec(R) be a proper flatOK-scheme and let U → X be an open immersion.
Consider the reduction map

red : Uan → Xs (7.9)
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as in [84, Section 4], where Xs is the special fiber of X . We now obtain a partition of Uan

by taking the inverse image under red(·) of a partition of Xs.

7.3.2 Tropical invariants

We start with the definition of tropical weighted projective space.

Definition 7.15. Let (TAn)∗ = Rn \ {(∞, . . . ,∞)}, the punctured tropical affine space.
For a fixed n-tuple of natural numbers (a1, . . . , an), we define an action of R on (TAn)∗ as
follows:

λ⊙ (x1, . . . , xn) := (x1, . . . , xn) + λ · (a1, . . . , an).

The (set-theoretic) quotient of (TAn)∗ by this action is called the tropical weighted projective
space, and is denoted by TP(a1, . . . , an).

Now, let U be an irreducible variety over K and let G be a group scheme over K acting
on U . Suppose that there exists a geometric quotient V = U/G for U and G. The notion of
a tropical separating from Section 7.3.1 now allows us to define a set of tropical invariants.

Definition 7.16. Let V an ⊃ S =
⊔
Si be a partition of a subset S of V an. A set of tropical

invariants for the partition is a tropical separating set for the partition. If the tropical
invariants give an embedding into a weighted projective space P(a1, . . . , an), then we call
this a set of tropical projective invariants. The image of the tropicalization is the space
TP(a1, . . . , an).

Since points of V an correspond to orbits in Uan, we find that a set of tropical invariants
separates a partition of a subset of Uan that is stable under the action of G.

Example 7.17. Consider the ring K[x, y]. The group symmetric S2 ≃ Z/2Z acts on K[x, y]
by x 7→ y and y → x. The invariant ring is K[xy, x + y] and, on the level of schemes,
the map Spec(K[x, y]) → Spec(K[xy, x + y]) gives the geometric quotient. Consider the
standard embedding of A2 = Spec(K[x, y]) into P2. The group action then extends to P2.
The boundary is isomorphic to P1 and we decompose P2 into

S0 = {[x : y : z] | z ̸= 0}, S1 = {[1 : 1 : 0]} and S2 = {[x : y : 0] | x ̸= y}.

This induces a partition
S0 ⊔ S1 ⊔ S2 = (K[xy, x+ y])an

since the group action preserves the Si. We now note that the standard embedding

Spec(K[xy, x+ y]) = A2 → P2

is not tropically separating since char(K) ̸= 2. If we however consider the embedding into
P3 given by {xy, x+ y, (x− y)2, 1}, then this does form a tropical set of invariants.

We will see many more examples of tropical invariants in Sections 7.3.3 and 7.3.4.
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7.3.3 Moduli of tropical curves

We now review moduli of stable curves of genus zero. The functor M0,n : Sch → Sets
from the category of schemes to the category of sets, defined by

M0,n(S) = {smooth curves C → S of genus zero with n marked points}/ ∼ (7.10)

for n ≥ 3 is representable by a scheme M0,n. We refer to this as the moduli space of smooth
n-marked curves of genus zero. There is a natural compactification of this space, given by
replacing smooth curves by stable curves in (7.10). We denote the corresponding scheme by
M0,n. It is proper and flat over Spec(Z). The boundary locus ∆ = M0,n\M0,n corresponds
to non-smooth stable curves.

The symmetric group Sn acts on the above moduli spaces by permuting the marked
points. Since Sn is finite and M0,n and M0,n are quasi-projective, there exist geometric
quotients M0,n/Sn and M0,n/Sn which fit into a commutative diagram

M0,n M0,n

M0,n/Sn M0,n/Sn

The scheme M0,n/Sn is again proper over Z. The geometric points of M0,n/Sn (resp.
M0,n/Sn) can be identified with smooth (resp. stable) curves of genus 0 with n unordered
points.

We can also describe their abstract tropicalizations as in [2, Section 4]. We start with
the original set-up without quotients. Consider phylogenetic trees with n marked leaves,
together with a length function ℓ on the non-leaves. These are the points of the tropical
moduli space M trop

0,n . It can be given the structure of a generalized cone complex as in [2,
Section 2]. It can also be given as the tropicalization of the Plücker map as in [116, Theorem
6.4.12]. We obtain an abstract tropicalization map

trop : Man
0,n →M trop

0,n

by the following procedure. A point P ∈ Man
0,n can be represented by an L-valued point of

M0,n, and we use the natural map

M0,n(L)→M0,n(L) = M0,n(RL) (7.11)

to obtain a stable model X → Spec(OL) with special fiber Xs → Spec(kL). Here, L is a
complete valued field extension of K with valuation ring OL and residue field kL. Let T be
the marked dual intersection graph of Xs, together with the natural edge length function ℓ
induced from X . Note that there is a unique leaf for every marked point. We set trop(P ) =
(T, ℓ).
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We now define an action of Sm on M trop
0,n , which gives rise to a natural quotient space

M trop
0,n /Sm. We view an element of M trop

0,n as a metric tree (T, ℓ), together with an injection
i : {1, . . . , n} → L(T ), where L(T ) is the set of (infinite) leaves of T . Let C be a set of order
m ≤ n and let C → {1, . . . , n} be an injection. By permuting the leaves indexed by C, we
then obtain an action of Sm on M trop

0,n , where the latter is viewed as an object in the category
of generalized cone complexes. We now note that categorical quotients in the category of
generalized cone complex exist since arbitrary finite colimits exist, see [2, Remark 2.6.1].
From this, we obtain the following definition of M trop

0,n /Sm.

Definition 7.18. Let C → {1, . . . , n} be a given injection inducing an action of Sm on
M trop

0,n . The space M trop
0,n /Sm is the categorical quotient of M trop

0,n under the action of Sm.

Suppose that C = {1, . . . , n}. Set-theoretically, the points of M trop
0,n /Sn correspond to

unmarked phylogenetic metric trees with n leaves. As a topological space, it has a natural
stratification in terms of unmarked tree types. A similar interpretation also holds for other
markings.

Example 7.19. There are three non-trivial marked tree types for n = 4, giving three cones
R≥0. The types with edge lengths zero are all identified, so we glue these cones together to
obtain M trop

0,4 , which is a standard tropical line. The three cones are permuted by S4, giving

the quotient M trop
0,4 /S4 = R≥0.

Example 7.20. Let n = 5. Then, there are exactly three unmarked types: I, II and III; they
are depicted in Figure 7.1. Type III corresponds to a folded positive orthant of dimension
2, since the automorphism group of the underlying graph is Z/2Z. Figure 7.4 represents the
space M trop

0,5 /S5.

Figure 7.4: The space M trop
0,5 /S5

Example 7.21. Consider the natural injection C = {1, . . . , 4} → {1, . . . , 5}, giving rise to
an action of S4 on M trop

0,5 . We view the quotient M trop
0,5 /S4, which is represented in Figure 7.5,

as the moduli space of phylogenetic trees with 4 unmarked leaves and 1 marked leaf. There
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are five different corresponding phylogenetic tree types: I, II.1, II.2, III.1 and III.2; see
Figure 7.2.

∞

∞

∞

∞∞

Figure 7.5: The space M trop
0,5 /S4

In Figures 7.4 and 7.5, the (possibly folded) positive orthants are glued with respect to
degeneration of the corresponding tree types, which is shown in Figure 7.6. We refer to [119,
Section 2] and [30, Section 4] for more details.

∞

∞

∞

∞

∞

Figure 7.6: Degenerations of trees
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We can again introduce an abstract tropicalization map as follows. An L-valued point
of Man

0,n/Sn for L a valued field corresponds to a smooth curve of genus 0 with n unordered
points. We then obtain a phylogenetic metric tree as before, but we now forget the markings,
giving an element of M trop

0,n /Sn. All in all, this gives a map

trop : Man
0,n/Sn →M trop

0,n /Sn. (7.12)

Remark 7.22. The map in Equation (7.12) in particular gives a partition of Man
0,n/Sn by

considering the inverse images of the loci of unmarked tree types. We will use this partition
to obtain a partition of the space of binary forms in Section 7.3.4. We note that the partition
of Man

0,n/Sn is a special instance of the partitions we considered in Section 7.3.1 since the
construction in Equation (7.11) gives the reduction map from Equation (7.9).

7.3.4 Trees and tropical binary forms

Let V = Vk1⊕· · ·⊕Vkr be the standard SL2-module and write AG for the ring of invariants.
We consider Proj(AG), where the grading is induced by the degree of an invariant. We are
interested in the affine open U = D+(∆) for ∆ the discriminant. The set of L-valued points
U(L) of U can be identified with tuples of binary forms (f1, . . . , fr) over L without common
zeros and up to GL2-equivalence. Here deg(fi) = ki.

We now consider an L-valued point of U . This gives a set of binary forms (f1, . . . , fr)
over L. Consider the zero sets Z(fi) of the fi. Note that every zero set gives a well-defined
L-valued point of the moduli space M0,ki/Ski of ki unordered points on the projective line.
Indeed, taking a different equivalent binary form changes the zero set by the action of GL2,
so that the induced map

(P1, Z(f))→ (P1, Z(fσ))

is an isomorphism, which means that we obtain the same point in M0,ki/Ski . In other words,
we have a set-theoretic map

U →
∏

M0,ki/Ski .

The partition on the Berkovich analytification of
∏
M0,ki/Ski given in Remark 7.22 induces

a partition of Uan. We use this as our definition of a tropical invariant of a binary form.

Definition 7.23. A set of tropical invariants of a set of binary forms of degree n is a tropical
separating set for the partition of U induced from the maps U →Man

0,n/Sn →M trop
0,n /Sn, see

Equation (7.12).

For a given set of invariants hi, we obtain a rational map U → P(a0, . . . , an), where
deg(hi) = ai. If the hi include a set of generators of the ring of invariants, then this is
automatically a morphism since the set of generators generate the nullcone. If the set of
generators is a projective tropical separating set, then we call this a set of projective tropical
invariants.
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Example 7.24. For residue characteristics not equal to 2, the tropical invariants of a binary
quartic are given by c4, c6 and ∆; see [152, Chapter VII]. These are furthermore weighted
projective invariants, giving a tropicalization map to TP(4, 6, 12).

Example 7.25. For residue characteristics not equal to 2, the tropical invariants of a binary
sextic are given by the Igusa invariants from [89].

Example 7.26. In Section 7.4, we will show that the invariants introduced in the introduc-
tion form a set of tropical invariants for binary quintics and (4, 1)-forms. These then also
give the reduction types of Picard curves when the residue characteristic is not 3.

As promised in Section 7.2, we now show that the invariants I4, I8, I12, I18 and ∆ are
not enough to distinguish between the unmarked trees of a quintic.

Example 7.27. Let K = C{{t}} be the field of Puiseux series over the complex numbers
with val(t) = 1. Consider the two quintics given by

f2 = xz(x− z)(x− t2z)(x− 2z),

f3 = xz(x− z)(x− tz)(x− (1 + 2t)z).

The tree of f2 is of Type II and the tree of f3 is of Type III. However, in both cases, the
tropical invariants are the same:

[val(I4) : val(I8) : val(I12) : val(I18) : val(∆)] = [0 : 0 : 0 : 2 : 4].

We thus see that we cannot distinguish between the two tree types using these invariants.
This also implies that we cannot distinguish the various reduction types of Picard curves
using these invariants. They are however enough to decide whether a tree is of Type I or
not.

The results in this chapter show that there exists a set of projective tropical invariants
for quintics and (4, 1)-forms. In general, we conjecture that there exists a finite set of
projective tropical invariants for any set of binary forms. Moreover, there should be a
practical algorithm that can calculate these tropical invariants.

7.4 Proofs of the main results

In this final section, we prove the main results stated in the introduction, namely The-
orem 7.1, Theorem 7.2, Theorem 7.3 and Corollary 7.4. Some parts of the proofs rely on
computing the invariants explicitly. The computations are made available in (7.2).

Recall that our base field K is a non-archimedean, complete and algebraically closed
valued field of characteristic 0 with associated data (v,R,m, k). Moreover, the residue char-
acteristic p is different from 2, 3 and 11.
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Remark 7.28. If the residue characteristic of K is 11, then the second condition in The-
orem 7.1 does not characterize trees of Type II. This is because, when p = 11 divides the
reduction of the invariant H reduces to 0 modulo {x ∈ K : val(x) > val(H)}, see Equa-
tion (7.13). In this case, to obtain condition for Type II, we simply need to check that the
conditions for Type I and Type III are not satisfied.

7.4.1 Universal families

We first explain the general idea of the proofs. For a given binary quintic or (4, 1)-form,
we can apply a projective transformation σ ∈ GL(2, K) to rearrange the roots. This has the
following effect on the tree and the invariants:

1. If Σ is the (marked or unmarked) tree, then σ induces an isometry σ : Σ→ σ(Σ) outside
the type-1 points by the results in [14, Section 2.3]. Hence the tree is unchanged.

2. The transformation σ changes an invariant I by det(σ)deg(I). In particular, we find
that the projective tropical invariants are unchanged; see Remark 7.8.

For a given binary quintic or (4, 1)-form, we can apply a projective transformation so
that the resulting binary form is

f(x, z) = xz(x− z)(x− λ1z)(x− λ2z).

Here, we send the marked point to ∞. By examining the type of the tree, we then obtain
various conditions on the λi which we use to write down universal families for a given tree
type. Here by universal, we mean that every binary form with a given tree type occurs in
the given family. We then perform calculations on the universal families, which directly give
the proofs for our main theorems. We can make this more precise as follows. For a given tree
type, we fix a universal algebra A = OK [ti, µi] with λi ∈ A. This contains all the necessary
parameters for the universal family. We then consider OK-valued points ψ : A → OK such
that val(ψ(ti)) > 0. Such an OK-valued point corresponds to a specific binary form of the
given type. We will also write val(ti) > 0 if ψ is understood. To calculate with reductions,
we work in A/I, where I = m + (t1). We will also just refer to this as working modulo m.
We note that all the invariants are elements of the universal algebra A. In particular, for
any specialization ψ : A → OK , we have that ψ(I) ∈ OK . We write I ∈ A× if for every
specialization ψ as above, we have that val(ψ(I)) = 0.

In the proofs of the main theorems, we will use the universal families from Table 7.2; see
Figure 7.7 for the corresponding trees.
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Type λ1 λ2 Conditions

I µ1 µ2 µi ̸= 0, 1 and µ1 ̸= µ2

II.1 t1µ1 t1µ2 val(t1) > 0, µi ̸= 0 and µ1 ̸= µ2

II.2 t1µ1 µ2 val(t1) > 0, µi ̸= 0 and µ2 ̸= 1

III.1 t1µ1 t1t2µ2 val(ti) > 0 and µi ̸= 0

III.2 t1µ1 1 + t2µ2 val(ti) > 0, µi ̸= 0 and val(t1) ≤ val(t2)

Table 7.2: The chosen universal families

0

∞
1

λ1 λ2
Type I

∞

1

0

λ1

λ2Type II.1

∞0

λ1

1

λ2Type II.2

∞

1

λ1 0

λ2Type III.1

0

λ1

∞ 1

λ2Type III.2

Figure 7.7: Trees corresponding the universal families in Table 7.2

7.4.2 Proof of Theorem 7.1

In this subsection, we prove Theorem 7.1. In the proofs, we are free to choose the
universal family of either II.1 or II.2, and similarly for III.1 and III.2.

Type I: Computing the reduction modulo m of the discriminant ∆, we get

∆ = λ
2

1 λ
2

2 (λ1 − 1)2 (λ2 − 1)2 (λ1 − λ2)2.

So we deduce that val(∆) = 0, hence the condition 8 val(I) − deg(I) val(∆) ≥ 0 is
satisfied for any I ∈ S.

Type II: Consider the universal family for Type II.1 in Table 7.2. We calculate the invari-

ants I ∈ S and find that they are divisible by t
degI/2
1 . The reduction of H/t

deg(H)/2
1

modulo m is

H/t
deg(H)/2
1 = −22µ2

1µ
2
2(µ1 − µ2)

2. (7.13)
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Since p ̸= 2, 11, we find that the latter is non-zero. We thus obtain

val(H) = deg(H) val(t1)/2 = 6 val(t1),

and
val(I) ≥ deg(I) val(t1)/2 for I ∈ S \ {H}.

Therefore,
12 val(I)− deg(I) val(H) ≥ 0 for all I ∈ S.

On the other hand, computing the reduction modulo mK of I4/t
2
1 and I18/t

9
1, we find

that

I4/t21 = −2(µ2
1 − µ1µ2 + µ2

2),

I18/t91 = −µ2
1µ

2
2(µ1 − 2µ2)(µ1 + µ2)(2µ1 − µ2)(µ1 − µ2)

2.

It is not so hard to check that, since p ̸= 3, the quantities I4/t21 and I18/t91 cannot be
simultaneously zero. We thus find that

val(I4) = 2 val(t1) or val(I18) = 9 val(t1).

Our computations give val(∆/t61) ≥ 0, so we deduce that val(∆) > 4 val(t1) and thus

val(∆)− 2 val(I4) > 0 or 9 val(∆)− 4 val(I18) > 0.

Combining these, we obtain the statement of the theorem.

Type III: Consider the universal family for Type III.2 in Table 7.2. We compute the
reduction of I4 modulo m to obtain

I4 = −2.

So, since p ̸= 2, we deduce that val(I4) = 0. Computing ∆ and H, we obtain that ∆
is divisible by t21t

2
2 and H = 0. So we deduce that

val(∆)− 2 val(I4) > 0 and val(H)− 3 val(I4) > 0.

To finish the proof, we check that these conditions are sufficient. Suppose that the
condition in (I) is satisfied. In particular,

8 val(I4)− 4 val(∆) ≥ 0 and 8 val(I18)− 18 val(∆) ≥ 0.

But these imply that

val(∆)− 2 val(I4) ≤ 0 and 9 val(∆)− 4 val(I18) ≤ 0,
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so the conditions in (II) and (III) can not be satisfied. Now suppose that the conditions in
(II) are satisfied. The condition

val(∆)− 2 val(I4) > 0 or 9 val(∆)− 4 val(I18) > 0

gives
8 val(I4)− deg(I4) val(∆) < 0 or 8 val(I18)− deg(I18) val(∆) < 0,

and therefore, the condition in (I) can not be satisfied. On the other hand, the inequality
12 val(I4)− 4 val(H) ≥ 0 implies val(H)− 3 val(I4) ≤ 0, which means that the conditions in
(III) can not be satisfied either. Finally, suppose that the conditions in (III) are satisfied.
Hence,

8 val(I4)− deg(I4) val(∆) < 0 and 12 val(I4)− deg(I4) val(H) < 0,

so that the conditions in (I) and (II) can not be satisfied. This finishes the proof.

7.4.3 Proof of Theorem 7.2

In this subsection, we prove Theorem 7.2. The strategy is the same as in Section 7.4.2:
we first calculate the invariants for each universal family and show that the given inequalities
hold. This gives the necessity of the conditions. The sufficiency in this case is trivial, so this
concludes the proof. We start with trees of Type II.1 since the marking does not matter for
trees of Type I.

Type II.1: We calculate j2 and find that it is divisible by t21. Computing the reductions

modulo m of j5 we obtain j5 = 1. We then deduce that 5 val(j2)− 2 val(j5) > 0.

Type II.2: We calculate the reductions of j2 and j5 modulo m and find j2 = µ2
2 and j5 = 1.

So we deduce that 5 val(j2)− 2 val(j5) = 0.

Type III.1: We find that j2 is divisible by t21. Calculating the reduction of j5 modulo mK ,

we obtain j5 = 1. This implies 5 val(j2)− 2 val(j5) > 0.

Type III.2: We compute the reductions of j2 and j5 modulo mK and find j2 = j5 = 1. This
implies 5 val(j2)− 2 val(j5) = 0.

7.4.4 Proof of Theorem 7.3

For trees of Type I, there is nothing to prove.

Type II: We assume that the quintic f has tree Type II and use the universal family for
Type II.1 in Table 7.2.
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We compute the invariants ∆, I4 and I18, and find that ∆ ∈ t61A, I4 ∈ t21A and I18 ∈ t91A,
where A is the universal algebra in Section 7.4.1. Computing the reductions, we see

∆/t61 = µ2
1 µ

2
2 (µ1 − µ2)

2,

I4/t21 = −2 (µ2
1 − µ1µ2 + µ2

2),

I18/t91 = −µ2
1 µ

2
2 (µ1 + µ2) (µ1 − 2µ2) (2µ1 − µ2) (µ1 − µ2)

2.

Notice that, since p ̸= 3, the two quantities I4/t21 and I18/t91 cannot vanish simultane-
ously. So we get

val(∆) = 6 val(t1) and ( val(I4) = 2 val(t1) or val(I18) = 9 val(t1) ) .

So we deduce that

val(t1) =
1

2
(val(∆)− 2 val(I4)) or val(t1) =

1

3
(2 val(∆)− val(I18)) ,

and the valuation of t1, the length of the unique non-trivial edge, is then the maximum
of these two quantities, i.e.,

L(e1) = max

(
1

2
(val(∆)− 2 val(I4)) ,

1

3
(2 val(∆)− val(I18))

)
.

Type III: Before we give the proof of Theorem 7.3 for trees of Type III, we shortly discuss
the various formulas occurring in that theorem. For a tree of Type III, we can only
recover the edge lengths from the quintic invariants up to a permutation of the edges,
see Example 7.20. A set of representatives of the edges here is given by (e1, e2) with
L(e1) ≤ L(e2). For trees of Type III.2, this symmetry continues to hold, so the formulas
do not change. For trees of Type III.1, there is no such symmetry, meaning that we
can single out the edge next to the marked point. See Section 7.4.4 for the formulas
in this case.

Now suppose that f has tree Type III. Computing the invariants ∆, I4 and I18, we
obtain2

∆ = t21 t22 µ
2
1 µ

2
2 (t2µ2 + 1)2 (−t1µ1 + t2µ2 + 1)2 (t1µ1 − 1)2,

I18 = (µ1t1 − µ2t2)(µ1t1 + µ2t2)(−µ1t1 + µ2t2 + 2)(µ2
2t

2
2 − µ1t1 + 2µ2t2 + 1)

(µ2
2t

2
2 + µ1t1 − 1)(−2µ1µ2t1t2 + µ2

2t
2
2 − µ1t1 + 2µ2t2 + 1)(µ1µ2t1t2 − µ2t2 − 1)

(µ1µ2t1t2 + µ2t2 + 1)(µ1µ2t1t2 − µ1t1 + 1)(µ1µ2t1t2 + µ1t1 − 1)

(µ1µ2t1t2 + µ1t1 − 2µ2t2 − 1)(µ1µ2t1t2 + 2µ1t1 − µ2t2 − 1)(−µ2
1t

2
1 + µ2t2 + 1)

(−µ2
1t

2
1 + 2µ1µ2t1t2 + 2µ1t1 − µ2t2 − 1)(µ2

1t
2
1 − 2µ1t1 + µ2t2t2 + 1)

2The bold-faced factors have positive valuation, the remaining factors have valuation 0.



CHAPTER 7. TROPICAL INVARIANTS AND PICARD CURVES 165

and I4 ∈ A with I4 = −2. So we deduce that

val(∆) = 2 val(t1) + 2 val(t2) and val(I4) = 0.

If val(t1) < val(t2), then we get val(I18) = 2 val(t1) and this gives

L(e1) = val(t1) =
1

2

(
val(I18)−

9

2
val(I4)

)
.

If, on the other hand, val(t1) = val(t2), then we have

L(e1) = val(t1) =
1

4
(val(∆)− 2 val(I4)) .

Therefore, in both cases, we get

L(e1) = val(t1) = min

(
1

2

(
val(I18)−

9

2
val(I4)

)
,
1

4
(val(∆)− 2 val(I4))

)
.

The length of the second edge is val(t2) and can be computed using ∆ as

L(e2) = val(t2) =
1

2
(val(∆)− 2 val(I4))− val(t1).

Hence we deduce that

L(e1) = min

(
1

2

(
val(I18)−

9

2
val(I4)

)
,
1

4
(val(∆)− 2 val(I4))

)
,

L(e2) =
1

2
(val(∆)− 2 val(I4))− L(e1).

Type III.1: Now let (q, ℓ) be a (4, 1)-form with tree Type III.1. Let e1 be the edge adjacent
to∞ and e2 the second edge in the tree Type III.1, see Figure 7.2. Using the universal
family for Type III.1 and computing the invariants we find j2 ∈ t21A×, j5 = 1, ∆ ∈ t61t22A
and I4 ∈ t21A× and

j2/t21 = µ2
1, ∆/(t61t

2
2) = µ4

1µ
2
2, and I4/t21 = −2µ2

1.

So we deduce that

L(e1) = val(t1) =
1

10
(5 val(j2)− 2 val(j5)),

and

L(e2) = val(t2) =
1

2
(val(∆)− 2 val(I4))− L(e1).
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7.4.5 Proof of Corollary 7.4

We now recall from [87] how the reduction type of a Picard curve y3ℓ(x, z) = q(x, z) can
be recovered from the (4, 1)-marked tree of (q, ℓ). We refer the reader to [87, Section 1.2] for
the definition of the reduction type of a curve. We note here that our assumption that K
is algebraically closed is not restrictive. Namely, if we are interested in the reduction type
of a curve over a complete discretely valued field K, then its reduction type is completely
determined by the reduction type of the base change over K, see [87, Remark 3.6]. Finally,
we note that the notion of an edge length used here is the same as the notion of thickness
used in other sources.

Let X be a Picard curve over K. The branch locus B of the covering

X → P1

given by [x : y : z] 7→ [x : z] is the zero locus of q·ℓ. The minimal skeleton of the marked curve
(P1,an, B) is then the (4, 1)-marked tree of (q, ℓ). By applying a projective transformation,
we can assume that the zero of ℓ is ∞.

For tame coverings, we have that the inverse image of a skeleton is a skeleton (see [87,
Theorem 3.1] or [88, Theorem 1.1]), so we obtain a map

Σ′ → Σ,

where Σ is the (4, 1)-marked tree and Σ′ is its inverse image under the morphism of Berkovich
analytifications Xan → P1,an. Consider the dehomogenized polynomial q = q(x, 1). The
criteria in [87, Section 3.1] allow us to reconstruct Σ′ explicitly in terms of the piecewise-
linear function −log|q| on P1,an\B. This function can in turn be obtained from potential
theory. We then find that over an edge in Σ, there are three edges if and only if the slope
of −log|q| is divisible by three. If it is not divisible by three, then the length of an edge
has to be divided by three. That is, the expansion factor de′/e in this case is three. This
data is enough to determine the skeleton for Picard curves, as the weights of the vertices
are determined by the Riemann–Hurwitz conditions. The resulting graphs can be found in
Figure 7.3.

Proof of Corollary 7.4. By Theorem 7.2, the (4, 1)-marked tree type of (q, ℓ) is determined
by the tropical invariants. The edge lengths of the (4, 1)-marked tree type are then given by
Theorem 7.3. To obtain the edge lengths for the curve X, we use the formula

de′/eL(e′) = L(e),

where de′/e is the expansion factor, see [8, Definition 2.4, Theorem 4.23].

7.5 Conclusion

To conclude, the results discussed in this chapter give a method to determined the tree
type of a binary quintic or a (4, 1)-form from the valuation of their associated invariants.
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Every tree type corresponds to a cone cut out by a set of inequalities in the valuations of
the invariants. This has an application in terms of determining reduction types of a Picard
curve in terms of the invariants of the (4, 1)-form involved in its equation.
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Probab. Birkhäuser Boston, Boston, MA, 1991, pp. 173–181 (cit. on pp. 128, 130,
132).

[64] Steven N. Evans. “Local field Brownian motion”. In: J. Theoret. Probab. 6.4 (1993),
pp. 817–850 (cit. on pp. 41, 128, 130, 132).

[65] Steven N. Evans. “Local fields, Gaussian measures, and Brownian motions”. In: Topics
in probability and Lie groups: boundary theory. Vol. 28. CRM Proc. Lecture Notes.
Amer. Math. Soc., Providence, RI, 2001, pp. 11–50 (cit. on pp. 5, 6, 8–10, 17, 19, 27,
28, 31, 40, 41, 128, 130, 132, 134, 140).

[66] Steven N. Evans. “Sample path properties of Gaussian stochastic processes indexed
by a local field”. In: Proc. London Math. Soc. (3) 56.3 (1988), pp. 580–624 (cit. on
pp. 128, 130, 132).

[67] Steven N. Evans. “The expected number of zeros of a random system of p-adic poly-
nomials”. In: Electron. Comm. Probab. 11 (2006), pp. 278–290 (cit. on pp. 19, 133).

[68] Steven N. Evans and Tye Lidman. “Expectation, conditional expectation and martin-
gales in local fields”. In: Electronic Journal of Probability 12.17 (2007), pp. 498–515
(cit. on pp. 128, 130, 132).



BIBLIOGRAPHY 173

[69] Steven N. Evans, Daniel Raban, et al. “Rotatable random sequences in local fields”.
In: Electronic Communications in Probability 24 (2019), Paper No. 37, 12 (cit. on
pp. 21, 130, 134).

[70] Gerd Faltings. “Toroidal resolutions for some matrix singularities”. In: Moduli of
abelian varieties (Texel Island, 1999). Vol. 195. Progr. Math. Birkhäuser, Basel, 2001,
pp. 157–184 (cit. on p. 13).

[71] William Fulton. Young tableaux. Vol. 35. London Mathematical Society Student Texts.
With applications to representation theory and geometry. Cambridge University Press,
Cambridge, 1997, pp. x+260 (cit. on p. 135).

[72] William Fulton and Joe Harris. Representation theory. Vol. 129. Graduate Texts in
Mathematics. A first course, Readings in Mathematics. Springer-Verlag, New York,
1991, pp. xvi+551 (cit. on p. 135).

[73] Yan V. Fyodorov, Antonio Lerario, and Erik Lundberg. “On the number of connected
components of random algebraic hypersurfaces”. In: J. Geom. Phys. 95 (2015), pp. 1–
20 (cit. on p. 132).

[74] Damien Gayet and Jean-Yves Welschinger. “Betti numbers of random real hyper-
surfaces and determinants of random symmetric matrices”. In: J. Eur. Math. Soc.
(JEMS) 18.4 (2016), pp. 733–772 (cit. on pp. 129, 132).

[75] Damien Gayet and Jean-Yves Welschinger. “Expected topology of random real al-
gebraic submanifolds”. In: J. Inst. Math. Jussieu 14.4 (2015), pp. 673–702 (cit. on
pp. 129, 132).

[76] Damien Gayet and Jean-Yves Welschinger. “Lower estimates for the expected Betti
numbers of random real hypersurfaces”. In: J. Lond. Math. Soc. 90 (1 2014), pp. 105–
120 (cit. on pp. 129, 132).

[77] Gerard van der Geer. Hilbert modular surfaces. Vol. 16. Ergebnisse der Mathematik
und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-
Verlag, Berlin, 1988, pp. x+291 (cit. on p. 65).

[78] Gerard van der Geer. Siegel modular forms of degree two and three and invariant
theory. 2021 (cit. on p. 146).

[79] Michel X Goemans. “Semidefinite programming in combinatorial optimization”. In:
Mathematical Programming 79.1-3 (1997), pp. 143–161 (cit. on p. 17).

[80] Roe Goodman and Nolan R. Wallach. Representations and invariants of the classi-
cal groups. Vol. 68. Encyclopedia of Mathematics and its Applications. Cambridge
University Press, Cambridge, 1998, pp. xvi+685 (cit. on p. 137).

[81] Paul Gordan. “Beweis, dass jede Covariante und Invariante einer binären Form eine
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In: Inst. Hautes Études Sci. Publ. Math. 5.54 (1981), pp. 323–401 (cit. on pp. 43, 55).

[148] Jean-Pierre Serre. Trees. Translated from the French by John Stillwell. Springer-
Verlag, Berlin-New York, 1980, pp. ix+142 (cit. on p. 125).

[149] Michael Shub and Steve Smale. “Complexity of Bézout’s theorem. I. Geometric as-
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285 (cit. on pp. 129, 132).

[151] Michael Shub and Steve Smale. “Complexity of Bezout’s theorem. III. Condition
number and packing”. In: J. Complexity 9.1 (1993). Festschrift for Joseph F. Traub,
Part I, pp. 4–14 (cit. on pp. 129, 132).

[152] Joseph H. Silverman. The arithmetic of elliptic curves. Second. Vol. 106. Graduate
Texts in Mathematics. Springer, Dordrecht, 2009, pp. xx+513 (cit. on pp. 64, 143,
159).



BIBLIOGRAPHY 179

[153] Richard P. Stanley. Enumerative combinatorics. Volume 1. Second. Vol. 49. Cam-
bridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge,
2012, pp. xiv+626 (cit. on pp. 81, 88).

[154] Bernd Sturmfels. Algorithms in invariant theory. Second. Texts and Monographs in
Symbolic Computation. SpringerWienNewYork, Vienna, 2008, pp. vi+197 (cit. on
pp. 142, 147).

[155] Bernd Sturmfels. “Open problems in algebraic statistics”. In: Emerging applications
of algebraic geometry. Springer, 2009, pp. 351–363 (cit. on pp. 27, 28).

[156] Bernd Sturmfels and Caroline Uhler. “Multivariate Gaussian, semidefinite matrix
completion, and convex algebraic geometry”. In: Ann. Inst. Statist. Math. 62.4 (2010),
pp. 603–638 (cit. on p. 17).

[157] Ping Sun. “Moment representation of Bernoulli polynomial, Euler polynomial and
Gegenbauer polynomials”. In: Statistics & Probability Letters 77.7 (2007), pp. 748–
751 (cit. on p. 69).

[158] Andrew V. Sutherland. “Constructing elliptic curves over finite fields with prescribed
torsion”. In: Math. Comp. 81.278 (2012), pp. 1131–1147 (cit. on p. 64).

[159] Mitchell H. Taibleson. Fourier analysis on local fields. Princeton University Press,
Princeton, N.J.; University of Tokyo Press, Tokyo, 1975, pp. xii+294 (cit. on p. 5).

[160] Patrice Tauvel and Rupert W. T. Yu. Lie algebras and algebraic groups. Springer
Monographs in Mathematics. Springer-Verlag, Berlin, 2005, pp. xvi+653 (cit. on
p. 137).

[161] Ngoc M. Tran. “Enumerating polytropes”. In: Journal of Combinatorial Theory, Se-
ries A 151 (2017), pp. 1–22 (cit. on pp. 100, 106).

[162] Ngoc M. Tran. “Tropical Gaussians: a brief survey”. In: Algebraic statistics 11 (2020)
(cit. on p. 19).

[163] Ngoc M. Tran and Josephine Yu. “Product-mix auctions and tropical geometry”. In:
Math. Oper. Res. 44.4 (2019), pp. 1396–1411 (cit. on p. 19).

[164] Fang-Ting Tu. “On orders of M(2, K) over a non-Archimedean local field”. In: Int.
J. Number Theory 7.5 (2011), pp. 1137–1149 (cit. on pp. 125, 127).

[165] Vasilii Sergeevich Vladimirov, Igor’ Vasil’evich Volovich, and Evgenii Igorevich Ze-
lenov. p-adic analysis and mathematical physics. Vol. 1. Series on Soviet and East
European Mathematics. World Scientific Publishing Co., Inc., River Edge, NJ, 1994,
pp. xx+319 (cit. on p. 41).
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