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1. Introduction and notations

In these notes we discuss general Bessel processes and their properties. We denote by W
the space C(R+,R) of continuous functions on the positive half line and byX the coordinate
process on this space ( in Section 2 we will define a family of probability measures on this
space). For an integer d we denote by B(d) "the" d-dimensional Brownian motion and
r
(d)
t =

∥∥∥B(d)
t

∥∥∥
2
the euclidean norm process of B(d) known as the Bessel process of order d.

It is known that the process r(d)t satisfies the following SDE

drt
(d) =

d− 1

2r
(d)
t

dt+ dB′t

where B′ is a certain linear Brownian motion. We write rt instead of r(d)t when there is no
ambiguity on the dimension. This defines a countable family of probability measures on
the space W that we will generalize a little further in our discussion. Before we do so we
need to recall some results and concepts that we will encounter throughout these notes.

Theorem 1.1 (Uniqueness of strong solution of SDEs). — Consider the SDE

dXt = b(t,Xt)dt+ σ(t,Xt)dBt (∗)
such that |b(t, x)− b(t, y)| ≤ K|x−y| for any x, y ∈ R and t ≥ 0 and |σ(t, x)−σ(t, y)| ≤

h(|x− y|) where the function h satisfies the conditions
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h is stricrly increasing , h(0) = 0 and
∫ ε

0

h−2(u)du = +∞ for all ε > 0

Then there exists at most one strong solution for the equation (∗)

Theorem 1.2 (Yamada Watanabe). — The existence of weak solutions for a stochastic
differential equation for which strong uniqueness holds implies existence and uniqueness of
the strong solution.

2. Bessel processes

In order to extend the definition of Bessel processes we first notice that in dimension d
one has the following relation with rt and B(d) using Itô’s formula:

r2t = r20 + 2
d∑
i=1

∫ t

0

Bi
sdB

i
s + d.t

We know that rt is positive for all t > 0 almost surely when d > 1 and that for d = 1
the set of zeros of rt has 0 Lebesgue measure so that we can make sense of the process

βt =
d∑
i=1

∫ t

0

Bi
s

rs
dBi

s

Using the Itô’s isometry we can get 〈β, β〉t = t then by Lévy’s theorem β is a linear
Brownian motion. Finally notice that we have again by Itô ’s formula

r2t = r20 + 2

∫ t

0

rsdβs + d.t

We regard Bessel processes as solutions of the previous SDEs indexed by d. To extend
this definition, for real numbers δ ≥ 0 and x ≥ 0 consider the SDE

Zt = x+ 2

∫ t

0

√
|Zs|dβs + δt

A natural question to ask is whether this equation has solutions or not. The answer is
yes, there exists a unique strong solution for this SDE: since |

√
x − √y| ≤

√
|x− y| one

can invoke a result of Yamada and Watanabe on the existence of strong solutions for SDEs
(see section 3 of chapter IX in [RY13] ). The solution is Z ≡ 0 when x = δ = 0 and by
the comparison theorems ( see chapter IX in [RY13]) we then get Zt ≥ 0 a.s for all cases
of δ and x. Then one can get rid of the absolute value in the above equation and state the

Definition 2.1. — For every δ ≥ 0 and x ≥ 0 the unique strong solution of the equation

Zt = x+ 2

∫ t

0

√
|Zs|dβs + δt
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is called the square of δ-dimensional Bessel process started at x and we denote it by
BESQδ(x). The real number δ is called the dimension and we call ν := δ

2
− 1 the index of

this process. We may write BESQν when we want to index by ν instead of δ.

This defines a two parameter family of probability measures on W which we denote
by Qδ

x ( we write Q(ν)
x to use the index instead of the dimension) which coincides with

the squared modulus of the Brownian motion when δ is an integer. We give a first result
concerning this family of distributions which is trivial when d is an integer.

Proposition 2.2. — For δ, δ′ ≥ 0 and x, x′ ≥ 0 one has

Qδ
x ∗Qδ′

x′ = Qδ+δ′

x+x′

By ∗ here we mean the convolution product, more precisely Qδ
x ∗Qδ′

x′ is the push-forward
of the measure Qδ

x ⊗Qδ′

x′ on the space W2 by the map W2 →W, (w,w′) 7→ w + w′.

Proof. Let β, β′ be two independent linear Brownian motions and Z,Z ′ the corresponding
solutions for (x, δ) and (x′, δ′) and X = Z + Z ′. Then obviously

Xt = x+ x′ + 2

∫ t

0

(√
Zsdβs +

√
Z ′sdβ

′
s

)
+ (δ + δ′)t

Now let β′′ be a third Brownian motion independent of the first two. Define γ as

γ =

∫ t

0

1Xs>0

√
Zsdβs +

√
Z ′sdβ

′
s√

Xs

+

∫ t

0

1Xs=0 dβ
′′
s

We can show that 〈γ, γ〉t = t which means again by Lévy’s theorem that γ is a linear
Brownian motion. Finally we have

Xt = (x+ x′) + 2

∫ 2

0

√
Xsdγs + (δ + δ′)t

This finishes the proof since it implies that X has distribution Qδ+δ′

x+x′ .

Remark 2.3. — Notice that this result shows that the Qδ
x’s are infinitely divisible laws

on W. These are not the only distributions that satisfy this kind of identity (one can take
a look at exercise 1.13 448 in [RY13]).

This result, intuitive as it is, proves to be useful as the following corollary and discussion
show.

Corollary 2.4. — If µ is a measure on R+ with
∫
R+(1 + t)dµ(t), then there exists two

positive real numbers Aµ, Bµ with

EQδx

[
exp

(
−
∫ ∞
0

Xtdµ(t)

)]
= AxµB

δ
µ

where X is the coordinate process.
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Proof. We define φ(x, δ) = EQδx

[
exp

(
−
∫∞
0
Xtdµ(t)

)]
and establish a functional equation

on φ. First notice that by using Jensen’s inequality one can see that φ(x, δ) > 0. We also
have thanks to the previous result that

φ(x+ x′, δ + δ′) = φ(x, δ)φ(x′, δ′)

This yields the equation φ(x, δ) = φ(x, 0)φ(0, δ) and thus the separation of x and δ. The
functions φ(0, .), φ(., 0) are multiplicative and monotone hence they are exponential. This
finishes the proof.

Now we give a more concrete application of this result by choosing µ = λεt where εt is
the Dirac measure in t. We get

EQx,1 [exp(−λXt)] = E√x[e−λB
2
t ]

An easy integration show that E√x[e−λB
2
t ] = (1 + 2λ)−1/2 exp(−λx/(1 + 2λt)) and hence

we deduce

EQx,δ [exp(−λXt)] = (1 + 2λ)−δ/2 exp(−λx/(1 + 2λt))

Inverting this Laplace transform gives us the semi-group of BESQδ

Corollary 2.5. — For δ > 0, the semigroup of BESQδ has a density in y given by

qt(x, y) =
1

2

(y
x

)ν/2
exp

(
−(x+ y)

2t

)
Jν(
√
xy/t)

where Jν is the Bessel function of index ν

When x = 0 one has

at(0, y) = (2t)−ν−1 Γ(δ/2) exp

(
−y
2t

)
yν

As a consequence the process BESQδ is a Feller process. Notice that for a continuous
function f on R+ the map EQx,δ [f(Xt)] is continuous in both x and t (Stone Weierstrass
+ special case f(x) = e−λx ) so one may apply the results on that we have already seen
previously (see chapter III in [RY13] ) so conclude that this is indeed a Feller process.
Here are a few observations on the behavior of these processes.

From the comparison theorem for SDEs and the facts we have already established for
Brownian motion we get
i. For δ ≥ 3 the process BESQδ is transient and for δ ≤ 2 it is recurrent.
ii. For δ ≥ 2 the set {0} is polar and for δ ≤ 1, it is reached a.s. Furthermore for δ = 0

the origin is an absorbing point.
It remains to say something about the case of small δ. But if one considers

sν(x) =

{
−x−ν if ν > 0

x−ν if ν < 0
and s0(x) = log(x)
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and T the hitting time of 0 then Itô’s formula shows that sν(X)T is a local martingale
under Qδ

x. The point 0 is then reached almost surely for 0 ≤ δ < 2 (check exercise III.3.21
[RY13]).

Proposition 2.6. — For δ = 0, the point 0 is absorbing. For < δ < 2, the point 0 is
instantaneously reflecting.

The first point is trivial since when x = δ = 0 the solution is the zero process.

Proof. For 0 < δ < 2 if X is a BESQδ then it is a semi-martingale (just by definition from
the SDE that X satisfies). We have the local time

L0
t (X) = 2δ

∫ t

0

1Xs=0ds

and 〈X,X〉t = 4Xtdt so the occupation formula that we have seen in the local times
chapter gives∫ ∞

0

(4a)−1Lat (X)da =

∫ t

0

10<Xs(4Xs)
−1d〈X,X〉s =

∫ t

0

10<Xsds ≤ t

Then we deduce that L0
t (X) = 0 for all t. Hence X spends not times at 0.

We recall the scaling properties of Brownian motion. If Bx
t = x+Bt then for any x > c

the processes Bx
c2t and cB

x/c
t have the same distribution. The same kind of scaling applies

to BESQδ.

Proposition 2.7. — If X is a BESQδ(x) then for any c > 0, the process c−1Xct is a
BESQδ(x/c).

Proof. A change of variable in the SDE defining BESQδ(x) gives

c−1Xct = c−1x+ 2

∫ t

0

(c−1Xcs)
1/2c−1/2dBcs + δt

which finishes the proof.

We go back to corollary 2.4 to explain how one can compute the constants Aµ, Bµ which
will help us compute the transform of some Brownian functionals. We recall from the Local
times chapter in [RY13] that for a Radon measure µ the equation φ′′ = φµ (is the sense of
distribution) has a unique solution which is unique solution φµ which is positive and non
increasing on R+ and we have φµ(0) = 1. Furthermore φµ is convex, so it’s right-derivative
φ′µ exists and is in [0, 1] (even better φµ(∞) < 1 otherwise µ = 0 and φµ = 0). From here
on in suppose that

∫
R+(1 + x)dµ(x) < +∞ (as we will see this implies φµ(∞) > 0 ). Let

Xµ =

∫ ∞
0

Xtdµ(t)
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Theorem 2.8. — In the previous setup we have

EQx,δ

[
exp

(
−1

2
Xµ

)]
= φµ(∞)δ/2 exp

(x
2
φ′µ(0)

)
Proof. φ′µ is a right continuous and increasing then Fµ =

φ′µ
φµ

is right continuous and of finite
variation . Then using integration by parts (or Itô ’s formula for the product function) we
get

Fµ(t)Xt = Fµ(0)x+

∫ t

0

Fµ(s)dXs +

∫ t

0

XsdFµ(s)

On the other hand one has

∫ t

0

XsdFµ(s) =

∫ t

0

Xs

dφ′µ(s)

φµ(s)
−
∫ t

0

Xs

φ′µ(s)

φ2
µ(s)

dφµ(s)

=

∫ t

0

Xsdµ(s)−
∫ t

0

XsF
2
µ(s)ds

Hence, since Mt = Xt − δt is a Qx,δ continuous local martingale, the process

Et = exp

(
1

2

∫ t

0

Fµ(s)dMs −
1

2

∫ t

0

F 2
µ(s)ds

)
is a continuous local martingale and we have

Et = exp

(
1

2
[Fµ(t)Xt − Fµ(0)x− δ log(φµ(t))]− 1

2

∫ t

0

Xsdµ(s)

)
This local martingale is bounded on [0, T ] for any T > 0 because F is negative and X is

positive and we get

E[Zµ
t ] = E[Zµ

0 ] = 1

as t→∞ we get the desired result as the following argument explains:

Proposition 2.7 implies that Xt
t

converges in distribution as t→∞ and

φ′µ(x) = −(φµµ)((x,+∞)) and 0 < aFµ(a) ≤
∫ ∞
a

xdµ(x) −−−→
a→∞

0

This implies that Fµ(t)Xt converges in probability to 0 and this finishes the proof.

This result gives an easy proof of the Cameron-Martin Formula which is
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E
[
exp

(
−λ
∫ 1

0

B2
sds

)]
=

1√
cosh(

√
2λ)

This can be obtained by picking x = 0 and δ = 1 in the following equation

Corollary 2.9. —

EQx,δ

[
exp

(
−b

2

2

∫ 1

0

Xsds

)]
= cosh(b)−δ/2exp

(
−1

2
xb tanh(b)

)
Proof. We need to compute the solution φµ of the equation φ′′ = φµ when µ(ds) = b2ds
on [0, 1]. It’s not too hard to show that φµ(t) = α cosh(bt) + β sinh(bt) and the initial
condition gives α = φµ(0)1. Since φ is constant on [1,+∞[ and φ′µ is continuous we must
have φ′µ(1) = 0 which means that

b sinh(b) + βb cosh(b) = 0

this gives β = − tanh(b). Then we deduce that φµ(t) = cosh(bt) − tanh(b) sinh(bt) on
[0, 1]. Hence φ(∞) = φµ(1) = cosh(b)−1 and φ′µ(0) = −b tanh(b)

So far we have only discussed the square of Bessel processes. We now discuss Bessel
processes themselves which just amounts to applying the homeomorphism of R+ given by
x 7→

√
x. This means that since X is a Markov process under Qx,δ then the process

√
X

also is.

Definition 2.10. — The square root of BESQδ(x
2) is what’s called the Bessel process

if dimension δ started at x and we denote this process by BESδ(x). We denote it’s
distribution on W by Pδx.

Most of the results of the previous discussions can be stated for the process BESδ(x).
Namely the results on transience and recurrence and one can also compute the semi-group
of this process just from that of BESQδ(x

2). This shows that BESδ(x) is also a Feller
process. As we have seen in the introduction for integer values of δ the process BESδ(x)
satisfies the SDE

dXt = x+ dβt +
δ − 1

2

1

Xt

dt

Here is a scaling result for this process

Proposition 2.11. — BESδ has the same scaling property as Brownian motion.

Proof. Not very hard to show from the SDE.
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