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1. Preliminaries

Let k be a field and let us once and for all fix an algebraic closure k. Let
ks be the separable closure of k in k. The extension ks/k comes with a Galois
group G := Gal(ks/k) which is called the absolute Galois group of k. The
extension ks/k has infinite degree and it contains all separable finite extensions
of k. While the main theorem of Galois theory is stated for finite separable
extensions of k, the same result does work well with infinite extensions. The
following is a typical example of what can go wrong.

Example 1.1. — Assume k = Fp is the finite field with p-elements where p is
a prime number. The algebraic closure Fp is separable and its Galois group
G = Gal(Fp/Fp) contains a distinguished element of this Galois group which
is the Frobenius morphism ϕ : x 7→ xp. For any finite extension Fpn of Fp the
Galois group Gal(Fpn/Fp) is generated by the restriction ϕn = ϕ|Fpn

, so in other
words Gal(Fpn/Fp) = 〈ϕ|Fpn

〉 ' Z/nZ. Hence we get G = lim
←n

Gal(Fpn/Fp) '

Ẑ := lim
←n

Z/nZ which is the arithmetic completion of Z. However, the Frobenius
automorphism does not generate the absolute Galois group, i.e. we do not have
Gal(Fp/Fp) = 〈ϕ〉. To see that, let’s consider an element σ ∈ G and let’s call
σn its restriction to Fpn . We know that for each n ≥ 1 there exists an ∈ Z such
that σn = ϕann . These integers an have to satisfy the following condition for
any integers m|n:

an = am mod m.

Since we are looking for an element σ such that σ 6∈ 〈ϕ〉, it suffices to find such
a sequence of integers that satisfy the additional condition that there exists no
a ∈ Z such that an = a mod n. Such a sequence of integers can be found as
follows:

For every n ≥ 1, write n = pvp(n)n′ where p does not divide n′. By Bezout’s
theorem exist un, vn ∈ Z such that unn′ + vnp

vp(n) = 1. The reader can check
that picking an = n′un solves the problem and we can thus find elements in G
that are not powers of the Frobenius ϕ.
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Also, when the extension is infinite, we no longer have the usual Galois
correspondence between field extensions of k and subgroups of G. However we
can mend this problem by changing the statement a little as we explain in the
following sections.

2. A topology on the Galois group

To fix the statement of the Galois correspondence in the infinite extension
case, we need to equip our group G with a what is called the Krull topology.
Let K/k be a Galois extension of k and σ ∈ G and lets consider the coset
σGal(ks/K). An element τ is in this coest if and only if σ−1τ is trivial on K.
So the bigger the extension K, the closer τ gets to σ. From this intuitive idea,
we define a topology on G where the collection

Bσ := {σGal(ks/K), is a Galois extension of k}
is a basis of neighborhoods of the σ ∈ G.

Definition 2.1. — The Krull topology is the topology on G generated by the
collections of open sets Bσ where σ ∈ G.

This topology makes G into a topological group as the following proposition
explains.

Proposition 2.2. — Equipped with the Krull topology, the Galois group G is
a compact Hausdorff topological group.

Proof. 1. First we show that the inverse map is continuous. Let U ⊂ G
be an open set in G and H := {τ ∈ G, τ−1 ∈ U}. For τ ∈ H we
have t−1 ∈ U so there exists a finite Galois extension K of k such that
τ−1 Gal(ks/K) ⊂ U . So by taking the inverse Gal(ks/K)τ ∈ H. Hence
τ(τ−1 Gal(ks/K)τ) ⊂ U . Since K is a Galois extension, the group
Gal(ks/K) is normal so we have (τ−1 Gal(ks/K)τ) = Gal(ks/K). Hence
τ Gal(ks/K) ⊂ H. So H is an open set and thus the inverse map is
continuous.

2. Next, we show that the multiplication is continuous. Let U be an open
set of G and V = {(σ, τ), στ ∈ U} and (σ, τ) ∈ V . Since U is an
open set and στ ∈ U there exists a finite Galois extension K such that
στ Gal(ks/K) ⊂ U . Then, using the fact that Gal(ks/K) is normal, we
can see that σGal(ks/K) × τ Gal(ks/K) ⊂ V . So V is an open set in
G×G and thus the multiplication map is continuous. So G is indeed a
topological group.

3. Next we show that G is Hausdorff. If σ 6= τ ∈ G, there exists a finite
Galois extension K such that σ|K 6= τ|K . So the two open sets σGal(ks/K)
and τ Gal(ks/K) are disjoint neighborhoods of σ and τ .

4. Finally, we get to the hard task which amounts to showing that G
is compact. For this we consider the finite Galois groups Gal(K/k)
where K ranges over all finite Galois extensions of k. These groups,
endowed with the discrete topology, are compact. Their product is
then compact by Tykhonov’s theorem. The absolute Galois group G =
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Gal(ks/k), is the projective limit lim
←K finite Galois

Gal(K/k) inside the prod-
uct

∏
K finite Galois

Gal(K/k) and we have an injective homomorphism

Φ : G→
∏

K finite Galois

Gal(K/k)

σ 7→ (σ|K).

Our goal is to show that Φ is continuous, open (onto its image) and that
its image Φ(G) is closed. Let σ ∈ G and L a finite Galois extension of k
and consider the set Uσ,L := {σ|L} ×

∏
K 6=L Gal(K/k). The sets Uσ,L form

a basis of the product topology on
∏

K finite Galois
Gal(K/k). The preimage

Φ−1(Uσ,L) = σGal(ks/L) is an open set, so Φ is continuous. Also, we have
Φ(σGal(ks/L)) = Φ(G)∩Uσ,L. So the map Φ : G→ Φ(G) is open for the
induced topology on Φ(G). So Φ is a homeomorphism from G to its image.
Finally to see that Φ(G) is closed in the space

∏
K finite Galois

Gal(K/k), we

consider sets VL/K defined by

VL/K :=

{
(σF ) ∈

∏
F

Gal(F/k), (σL)|K = σK

}
.

We have Φ(G) = lim
←K finite Galois

Gal(K/k) =
⋂
K⊂L

VL/K . Then it suffices to

show that the set VL/K is closed. To see why VL/K is closed, we write
Gal(K/k) = {σ1, . . . , σn} and consider the sets Γi ⊂ Gal(L/k) defined as

Γi := {σ ∈ Gal(L/k), σ|K = σi}.

One can then check that

VL/K :=
n⋃
i=1

(
{σi} × Γi

∏
F 6=K,F 6=L

Gal(F/k)

)
.

So VL/K is a finite union of closed sets and hence is closed. We
then deduce that Φ(G) is closed and sits insite the compact group∏
K finite Galois

Gal(K/k), so Φ(G) is compact. Now, since Φ : G→ Φ(G) is

a homeomorphism we deduce that G is compact.

Remark 2.3. — Notice that the previous result is valid, not just for the
separable closure ks, but for any separable extensions F of k.

3. The Galois correspondence

Now that we have equipped Galois groups with a nice topology, we are ready
to state the general Galois correspondence.

Theorem 3.1. — Let F be a separable extension of k. The map K 7→
Gal(F/K) is a bijection between subextensions K of k inside F and closed
subgroups of Gal(F/k). Moreover, the open subgroups of Gal(F/k) correspond
exactly to the finite extensions K/k.
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Proof. First notice that any open subgroup H of Gal(F/k) is also closed. This
is a general fact for topological groups. To see why we write Gal(F/k) \H =⋃
σ 6∈H σH. So The complement of H is open as a union of open sets. Hence

H is also closed. Now if K/k is a finite subextension then Gal(F/K) is open
because any σ ∈ Gal(F/K) has a neighborhood σGal(F/Knor) where Knor

is the Galois closure of K in F . So for any finite subextension K the group
Gal(F/K) is open and hence also closed. If K is an general extension then

Gal(F/K) =
⋂

Ki/k finite

Gal(F/K),

so Gal(F/K) is a closed subgroup. Hence the map K 7→ Gal(F/K) taking
subextension to closed subgroups is indeed well defined. Moreover, this map
is injective since K is the fixed exactly the subfield of F fixed by Gal(F/K).
It now remains to show surjectivity. To see why this map is surjective, fix
a closed subgroup H of Gal(F/k). We need to show that H = Gal(F/K)
where K = FH is the field fixed by H. The inclusion H ⊂ Gal(F/K) is fairly
clear. Now, if σ ∈ Gal(F/K) and L/K a finite Galois subextension of F/K,
then σGal(F/L) is an open neighborhood of σ in Gal(F/K). The restriction
map H → Gal(L/K) sending τ to τ|L is surjective. To see why, consider
H|L the image of H under restriction to L. This is a subgroup of Gal(L/K)
with fixed field K so H|L = Gal(L/K) thanks to the usual Galois theory for
finite extensions. So, there exists τ ∈ H such that τ|L = σ|L, which means
that τ ∈ H ∩ σGal(F/L). We just showed that we can approximate any
σ ∈ Gal(F/K) with a certain τ ∈ H with any precision we want (by precision
we mean σ = τ ∈ H on arbitrarily big finite Galois extensions of K). So we
just showed that σ is in the closure of H. Since H is already a closed subgroup
we deduce that σ ∈ H hence Gal(F/K) ⊂ H. We have thus showed that
H = Gal(L/K) and hence that the map K 7→ Gal(F/K) is surjective.

It remains to show that last claim of the theorem. Let H be an open subgroup
of Gal(F/k), which is then also closed and hence of the form Gal(F/K) for some
extension K (this is thanks to the Galois correspondence we have established
above). The group Gal(F/k) is the disjoint union of the open cosets σH, but
since it is compact there exists σ1, . . . , σn such that (σiH) is an open covering
of Gal(F/k). We then deduce that the index [Gal(F/k) : H] is finite. This
means that K/k is a finite extension. The converse is fairly clear: if K/k is
finite then Gal(F/K) is an open subgroup.
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