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Abstract. In this expository paper, we present the theory of Harmonic
analysis on the field of p-adic numbers . These are locally compact, non-
discrete, totally disconnected topological fields. Hence, this harmonic
analysis is different in flavor compared to that on euclidean spaces.

Analyse Harmonique p-adique

Résumé. Ces notes ont pour but de présenter la théorie de l’analyse
harmonique p-adique (et en general sur les corps locaux). Ce derniers sont
des corps topologique localement compacts, non-discrets et totalement
discontinu. La structure topologique non intuitive de ces corps fait que
cette théorie est nettement différent de la théorie classique.

1. Introduction and background on local fields

A local field is a locally compact, non-discrete, totally disconnected topolog-
ical field. They have been introduced by Kurt Hensel in the 19th century and
were originally studied in number theory [Cas86]. However, local fields have
found a wide spectrum of applications from the study of error-free computation
[GK12] to mathematical physics [Khr90]. Moreover, they have become objects
of interest in their own right. There is an extensive literature on valued fields in
number Theory [Ser13, Wei13, EP05], analysis [vR78, Sch84, Sch07], represen-
tation theory [CR66], mathematical physics [VVZ94, Khr13], and probability
[Eva01, EL07, AZ01].

Two fundamental examples of local fields are the field of p-adic numbers Qp
and the field Fq((t)) of formal Laurent series in one variable t with coefficients
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in a finite field Fq. Actually, any local field is a finite algebraic extension of
either Qp or Fq((t)).

For the remaining of this paper, we focus on the case of p-adic fields Qp.
Much of the theory developed in this case can be easily generalized for local
fields.

Let p > 0 be a positive prime in Z. We can factor any rational number
r ∈ Q \ {0} uniquely as r = ps(a/b) where a, b ∈ Z are not divisible by p. The
number s ∈ Z is call the p-adic valuation of r and we write s = vp(r). When
r = 0 we take s =∞ by convention. We then get a map vp : Q→ Z satisfying
the following properties:

(i) vp : Q× → Z is a group morphism.
(ii) vp(x) =∞ if an only if x = 0.

The valuation map vp defines an absolute value |·|p on Q by taking |x|p = p−vp(x)

for any x ∈ Q. Moreover this absolute value is an ultrametric absolute value,
i.e, it satisfies the following conditions:

|x|p = 0 ⇐⇒ x = 0. (1.1)

|xy|p = |x|p|y|=p. (1.2)

|x+ y|p 6 max(|x|p, |y|p). (1.3)

The absolute value | · |p is also called a exponential valuation and once can
easily check that it’s non-archimedian, i.e, {|n|p, n ∈ Z} is bounded. This defines
a metric on Q associated to the prime p.

Just like R is the completion of Q with respect to the usual absolute value
| · |∞, the field Qp of p-adic numbers is the completion of Q with the absolute
value | · |p. Let Zp := {x ∈ Q, |x|p 6 1} the ball of radius 1. Thanks to property
1.3, the set Zp is a ring. It is called the ring of p-adic integers and the field Qp is
its field of fractions. So we can think of the pair (Zp,Qp) as the p-adic counter
part of (Z,Q).

From an algebraic point of view, we can first construct Zp as a projective
limit of the p-adic filtration (Z/pnZ)n>1, i.e,

Zp := lim←−
n

Z/pnZ.

Then we can construct Qp as the field of fractions of Zp. The ring Zp has a unique
maximal ideal p := {x ∈ Qp, |x|p < 1} = pZp . The quotient Zp/p = Z/pZ = Fp
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is called the residue field . This p-adic filtration construction allows us to see
elements of Qp as power series in p with coefficient in {0, 1, . . . , p− 1}, i.e,

Qp :=

x :=
∑
n>m

anp
n, am 6= 0 and m = vp(x) ∈ Z

 . (1.4)

The convergence of such a series is due to the fact that the partial sums
form a Cauchy sequence thanks to property 1.3 (see 2.1). We can then picture
Qp as an infinite tree with valence p+ 1.

Notice that, since the absolute value takes values in {pn, n ∈ Z}, the ball
unit Zp is both closed and open in the topology induced by | · |p. This is because
we can write Zp = {x ∈ Qp, |x|p 6 p}. We can then Qp is a totally disconnected
field.

In Section 2, we discuss some preliminary algebraic and topological properties
of Qp. Section 3 will treat general facts on Fourier theory on loacally compact
abelian groups while Section 4 will be devoted to additive character theory on
Qp. Finally, we shall Fourier analysis on (Qp,+) and compute some examples.

We stress that this theory, even though quite young compared to its Euclidean
counterpart, is pretty well established. The author claims no originality.

2. Preliminary properties of the p-adic completion Qp

We begin by recalling that the ultrametric property 1.3 that the absolue
value | · |p enjoys, endows the space Qp with a rather unintuitive topology. For
example, if two balls B1, B2 in Qp have a non empty intersection then either
B1 ⊂ B2 or B2 ⊂ B1. So in this section we will start by presenting a few
interesting properties of Qp that will be useful in developing Fourier theory.

2.1. Additive structure

For any n ∈ Z, the fractional ideal pn is a compact additive subgroup of Qp
and we can write

Qp =
⋃
n∈Z

pn =
⋃
n∈Z

pnZp.

The nested ideals Zp ⊃ p ⊃ p2 ⊃ . . . (0) forms a basis of neighborhoods of 0.
For a couple of integers n > m, we have [pm : pn] = pn−m. One can think of
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the collection of balls in Zp as being arranged in an infinite rooted p-ary tree:
the root is Zp, and the nodes at level k are all the balls of radius p−k (additive
cosets of pkZp). Let’s now describe open sets of Qp.

Proposition 2.2. — Any open set U in Qp is the union of disjoint costs
of pn, i.e, there exists a sequence (ai)i∈I of elements in U and integers (ni)i∈I
such that

U =
⋃
i∈I

(ai + pni)

and (ai + pni) ∩ (aj + pnj) = ø whenever i 6= j.

Proof. — Let a0 ∈ U an element of U . Since U is open there exists n ∈ Z
such that a0 + pn ⊂ U . But the set a0 + pn is both closed and open so the set
U \ (a0 + pn) is open. Choosing an element a1 ∈ U \ (a0 + pn) we can repeat
the same argument. So the result follows by induction. �

Example 2.3. — The ring of integers Zp is an open set. It is the disjoint
union of p cosets of p. In general it is the disjoint union of pn cosets of pn

Zp =
⋃

06a0,...,an6p−1

(a0 + a1p+ · · ·+ an−p
n−1 + pn).

The units Z×p of Zp are exactly the elements of valuation 0. This means that
Z×p = {x ∈ Zp, |x|p = 1}. This multiplicative group is an open set and we have

Z×p =
⋃

16a06p−1

(a0 + p).

We shall revisit this multiplicative group a little bit further in the context of
multiplicative structure.

Next we give a result on the converge of series in Qp which is far simpler
than its classical version on R or C.

Lemma 2.1. — Let (xn)n>0 be a sequence in Qp. Then the series
∑
n an is

convergent if and only if an −−−−→
n→∞

0.

Proof. — The only if direction is obvious. The if direction follows from 1.3
because, when an −−−−→

n→∞
0, the sequence of partial sums

∑n
k=0 ak is Cauchy. So

since Qp is by definition complete, the series converges. �

This justifies the convergence of the p-adic expansion of elements of Qp we
have seen in (1.4). Let’s now define an ingredient we will be using later in the
discussion of additive characters on Qp.
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Definition 2.4. — We define the tail of an element x =
∑

n=vp(x)

anp
n ∈ Qp

as follows:

ω(x) :=


−1∑

n=vp(x)

anp
n, if vp(x) < 0,

0, if vp(x) > 0

Notice that x ∈ Zp if and only if ω(x) = 0 and that ω : Qp → Q.

2.5. Multiplicative structure of Qp

Since we will discuss Fourier theory on the multiplicative group Q×p , we need
to better understand its structure. Let us define the nested sequence of groups
U0 ⊃ U1 ⊃ U2 ⊃ . . . as follows:

U0 = Z×p and Un = 1 + pn.

These groups form a neighborhood basis of the unit 1. Notice that U0/U1 ' F×p
and Un/Un+1 ' Fp for n > 1. Hence we have [U0, Un] = (p− 1)pn−1 for n > 1.
The group Q×p has a pleasant multiplicative structure since it can be decomposed
as follows:

Q×p ' pZ × U0 ' Z× U0.

We can also get a finer decomposition by decomposing U0 and we obtain
Q×p ' Z× F×p × U1. In general for n > 1 we have

Q×p ' Z× F×p × Fn−1p × Un.

Next we establish a interesting fact concerning the field Qp.

Proposition 2.6. — (Teichmuller representatives) The field Qp contains
the (p− 1)th roots of the unit.

This means that we can lift the elements of the cyclic multiplicative group
F×p to Zp. To show this fact one can use an algebraic result called Hensel’s
lemma which allows to lift a factorization of polynomials, or use the following
analytic argument.

Proof of Proposition 2.6. — For ε ∈ F×p = U0/U1 and x ∈ Zp such that
ε = x mod p. Then consider the sequence (xp

n

)n>0. We can show that this
sequence is a Cauchy sequence in Qp because xp

n+1

= xp
n

mod pn. Then the
sequence xp

n

converges to an element xε. Moreover, we have xpε = xε and xε 6= 0.
Hence we deduce that xp−1ε = 1. �
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We then have a cyclic multiplicative group µp−1 := {x ∈ Qp, xp−1 =

1} = {xε, ε ∈ F×p } in Z×p . The elements of this group are call Teichmuller
representatives. We also have

Zp = p ∪
⋃

u∈µp−1

(u+ p).

3. Characters theory of locally compact abelian groups

In this section we recall some Fourier analysis facts on locally compact
abelian groups which will be useful in discussing Fourier theory on (Qp,+) and
(Qp,××).

For that end, let G be a locally compact topological abelian group. A
character of G is a continuous group homomorphism χ : G→ C×. A character
is called unitary if its image lie in the unit circle S1 of C. Notice that the
torus S1 is the maximal compact subgroup of C× . Hence, by continuity, if G
is a compact group then all its characters are unitary. We denote by Ĝ the
set of unitary character of the group G. This is called the Pontryagin dual of
G (hence the dual notation). Clearly Ĝ is itself a group when endowed with
multiplication of characters. Moreover, we can define a natural topology on the
group Ĝ generated by the collection of sets

DK,U := {χ ∈ Ĝ, χ(K) ⊂ U} for K compact in G and U open in S1.

From the theory of Haar measures, it is known that every locally compact
group has left and right Haar measures that are unique up to scalar multipli-
cation. Let λ be a left Haar measure of the group G. Recall that this implies
λ(gA) = A for any measurable set in A (the σ-algebra here is the Borel σ-algebra
of the topological group G). Let us start with an easy but interesting lemma.

Lemma 3.1. — If χ is a non-trivial character of a locally compact abelian
group G. Then we have ∫

G

χ(x)λ(dx) = 0
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Proof. — If χ is non-trivial, there exists g ∈ G such that χ(g) 6= 1. Then,
since λ is a left Haar measure, we get∫

G

χ(x)λ(dx) =

∫
G

χ(gx)λ(gdx)

=

∫
G

χ(gx)λ(dx)

= χ(g)

∫
G

χ(x)λ(dx).

The result follows since χ(g) 6= 1. �

This result is the generalization of the classical result∫ 2π

0

eitxdx = 0, if t 6= 0.

Now, we can define the Fourier transform of a function f ∈ L1(G) to be the
function f̂ on the Pontryagin dual Ĝ defined by

f̂(χ) =

∫
G

f(g)χ(g)λ(dg). (3.1)

This definition depends obviously on the choice of the left Haar measure λ,
but since these are unique up to scalar multiplication the Fourier transform is
unique up to scalar multiplication.

The Pontryagin dual Ĝ of a locally compact group G is also locally compact.
Hence it also has a left Haar measure (again unique up to scalar multiplication).
We can choose a left Haar measure λ̂ on Ĝ such that for any f ∈ L1(G) such
that f̂ ∈ L1(Ĝ) we have

f(g) =

∫
Ĝ

f̂(χ)χ(g−1)λ̂(dχ).

This is the generalization of the Fourier inversion formula to locally compact
groups. As is known for classical Fourier theory, when f is smooth enough (when
f is in the Schwartz space for example), its Fourier transform is integrable and
the Fourier inversion formula applies. We shall see the analogue of this property
for Qp, in particular we will define the p-adic Schwartz space.

The Fourier transform can be extended to an isometry F : L2(G)→ L2(Ĝ).
This is due to the so-called Plancherel theorem:

Theorem 3.2. — Let F : L2(G) ∩ L1(G) → L2(Ĝ) ∩ L1(Ĝ) defined by
F (f) = f̂ . Then F is an isometry, i.e,∫

G

|f(g)|2λ(dg) =

∫
Ĝ

|f̂(χ)|λ̂(dχ),
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and can be extended into an isometry F : L2(G)→ L2(Ĝ).

Remark 3.1. — The Haar measures λ, λ̂ can be chosen so that the above
isometry equation holds. This is the source of the usual scaling factor 1

(2π)d
in

the classical Fourier theory.

Of course, no discussion of Fourier tranform is complete without mentioning
convolution product. For φ, ϕ ∈ L1(G) on can define the convolution product
of ϕ and φ in the usual way

(ϕ ∗ φ)(g) =

∫
G

ϕ(h)φ(h−1g)λ(dh).

One has ϕ ∗ φ ∈ L1(G) and the usual formula

ϕ̂ ∗ φ(χ) = ϕ̂(χ)φ̂(χ).

4. Characters of (Qp,+)

Since (Qp,+) is a locally compact topological group, the theory of characters
presented in the previous section applies. In this section we shall exhibit some
interesting properties of p-adic Fourier analysis.

First, Qp enjoys the nice property that all its characters are unitary. This
facts, as we have seen, holds for compact groups in general but since Qp is only
locally compact we need to prove it.

Proposition 4.1. — All the additive characters of Qp are unitary.

Proof. — If χ is a character of Qp it is continuous. For any compact additive
subgroup H of Qp the restriction χ|H is unitary. But since pn is a compact
subgroup of Qp for any n ∈ Z and Qp = ∪n∈Zpn, we deduce that χ is also
unitary. �

Let’s start by defining the fundamental character χ of (Qp,+). As we shall
see, we can retrieve all the characters of (Qp, ) from this character (hence the
terminology). We define χ : Qp → S1 by

χ(x) = exp(2πiω(x)).

Lemma 4.1. — The map χ is a character of (Qp,+).

Proof. — For x, y ∈ Qp such that vp(x) 6 vp(y) with

ω(x) =

−1∑
n=vp(x)

an and ω(y) =

−1∑
n=vp(y)

bn.
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Obviously, if x ∈ Zp and y ∈ Zp the two previous sums are 0. We can then write

ω(x+ y) =

−1∑
k=vp(x)

(ak + bk + εk−1)pk

where the numbers εk are defined as follows:

εk−1 =

{
1, if ak−1 + bk−1 + εk−2 > p

0, otherwise.

where we take ak = 0 whenever k < vp(x) and bk = 0 whenever k < vp(y) and
also εk−1 = 0 for k = vp(x). Comparing ω(x) + ω(y) to ω(x + y), we notice
that they are the same unless a−1 + b−1 + ε−2 > p in which case they differ
by 1. So, in any case we have e2πiω(x+y) = e2πi(ω(x)+ω(y)) which means that
χ(x+ y) = χ(x)χ(y).

For continuity, simply notice that χ is trivial on Zp which is a neighborhood
of 0. Hence χ is continuous. Then it is indeed a character. �

The fact that χ is trivial on Zp is a general fact for characters of (Qp,+) in
the following sense.

Proposition 4.2. — If ϕ is a non-trivial character of (Qp,+), then there
exists an integer n ∈ Z such that ϕ is trivial on pn and non trivial on pn−1.

Proof. — Let B be the open ball of radius 1/2 around 1 in C. Obviously the
only subgroup of C× contained in B is the trivial group {1}. By continuity of ϕ,
there exists n ∈ Z such that ϕ(pn) ⊂ B. Since ϕ is a group homomorphism and
pn is a subgroup of Qp, its image ϕ(pn) is a subgroup of C× that lies inside B.
Hence ϕ(pn) = {1}, and the desired result follows by taking a minimal n. �

We can then define the conductor of a character ϕ to be the largest subgroup
pn on which ϕ is trivial. For example, the conductor of the fundamental character
χ is the group Zp = p0.

Remark 4.3. — Let ϕ be a character with conductor pn. Notice that, since
for any x ∈ Qp there exists m ∈ Z such that pmx ∈ pn, we have ϕ(pmx) =

ϕ(x)p
m

= 1. So the image of any character ϕ of (Qp,+) lies in the subgroup of
p∞-units of C, i.e. for any character ϕ ∈ Q̂p:

ϕ(Qp) ⊂ µp∞(C) := {z ∈ C, zp
n

= 1 for some n > 0}.

We now explain how to build other charcters from the fundamental character
χ. This is simply by following the same recipe in classical Fourier theory on
(R,+). We define the character χu for u ∈ Qp as χu(x) = χ(ux) for any x ∈ Qp.
This analogue to the fact that all the characters x→ e2iπtx of (R,+) come from
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the character x→ e2iπx.

For u, v ∈ Qp with χu = χv we have χ((u−v)x) = 1 for all x ∈ Qp. Since the
fundamental character χ is non-trivial we deduce that u = v. So the characters
(χu) are distinct. Clearly the conductor of χu is simply p−vp(u). Now we state
the central theorem of this section.

Theorem 4.2 (Tate’s theorem). — The Pontryagin dual of Qp is the fol-
lowing

Q̂p = {χu, u ∈ Qp} ' Qp.

Sketch of the proof. — Let A = {χu, u ∈ Qp}, this is obviously a multiplica-
tive subgroup of Q̂p. We decompose the proof into four steps.

(1) The map u → χu is a group isomorphism from Qp to A. It’s clearly
surjective and injectivity follows from the previous discussion.

(2) The group A is dense in Q̂p. This is because if x ∈ Qp is such that
χu(x) = 1 for all u then x = 0.

(3) The map u→ χu is bicontinuous. To see why, let M > 0 and B = {x ∈
Qp, |x|p 6M} for a largeM . For u close enough to 0 the the restriction
χ|uB is trivial so the character χu is close to the trivial character in
the topology of Q̂p. On the other hand, if χu is close to the trivial
character, then χ|uB is trivial for a large M . Hence u is close to 0 in
Qp.

(4) The group A is then a locally compact subgroup of Q̂p. This implies
that A is complete. Since A is also dense in Q̂p, we deduce that Q̂p = A.

�

.

5. Fourier analysis on (Qp,+)

Let us fix the Haar measure λ on Qp such that λ(Zp) = 1 (notice that it is
unique). This measure is translation invariant by definition and every compact
set of Qp has a finite measure with respect to λ. Also, λ(pn) = p−n so any
non-empty open set has positive measure.

Proposition 5.1. — We have the following:∫
pn

χ(x)λ(dx) =

{
p−n if n > 0,

0 otherwise.
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Proof. — This follows from the proof of Lemma 3.1 because the conductor
of χ is Zp = p0. �

To more analysis on Qp, we now introduce the p-adic Schwartz space.

Definition 5.2. — We define the space C∞c (Qp) of complex valued locally
constant functions with compact support.

This is called the Schwartz space of Qp. Obviously, any function f ∈ C∞c (Qp)
is continuous and since f has compact support, then there exists n ∈ Z such
that supp(f) ⊂ pn. Since f ∈ C∞c (Qp) is locally compact, then there also exists
an integer n such that f is constant on cosets of pn. This implies that f takes
finitely many values. Finally, the space C∞c (Qp) is dense in each of the spaces
Lp(Qp) for 1 6 p 6∞. Now we can define the Fourier transform on L1(Qp).

Definition 5.3. — For f ∈ L1(Qp), we define the Fourier transform of f
as the function on Qp given by

f̂(u) =

∫
Qp

f(x)χu(x)λ(dx)

This is a particular case of the Definition 3.1. The difference is that in
equation (3.1) the Fourier transform f̂ takes as arguments the characters in
Q̂p. But since, thanks to theorem Tate’s Theorem 4.2, we have Q̂p ' Qp via
u 7→ χu we can consider that f̂ is a function on Qp instead of Q̂p.

Theorem 5.1. — The map f 7→ f̂ is a bijection from the Schwartz space
C∞c (Qp) onto itself. Moreover, a function f ∈ C∞c (Qp) is supported on pm and
constant on cosets of pn with n > m if and only if its transform f̂ is supported
on p−n and constant on the cosets of p−m.

Proof. — Let f ∈ C∞c (Qp) with support in pm and n > m such that f is
constant on the cosets of pn. Obviously, If m = n, the function f is constant.
Now let v ∈ p−m, then we have

f̂(u+ v) =

∫
pm

f(x)χu+v(x)λ(dx)

=

∫
pm

f(x)χ(ux+ vx)λ(dx)

=

∫
pm

f(x)χ(ux)χ(vx)λ(dx)

But since for x ∈ pm, we have vx ∈ Zp, and χ is trivial on Zp we deduce that

f̂(u+ v) =

∫
pm

f(x)χ(ux)λ(dx) = f̂(u).
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Hence, f is constant on cosets of p−m. Now, for y ∈ pn, since f is constant on
cosets of pn, we have

f̂(u) =

∫
Qp

f(x)χ(ux)λ(dx)

=

∫
Qp

f(x)χ(u(x− y))λ(dx)

= χ(−uy)

∫
Qp

f(x)χ(ux))λ(dx) = χ(−uy)f̂(u).

So if u 6∈ p−n, this means that uy 6∈ Zp and hence χ(−uy) 6= 1. This implies
that f(u) = 0 whenever u 6∈ p−n. Conversely, we proceed in the same way. �

Let us not compute some examples of Fourier tranform. Let 1n the indicator
of the set pn for n ∈ Z. Then, for u ∈ Qp we have thanks to Lemma 5.1

1̂n(u) =

∫
pn

χ(ux)λ(dx) =
1

|u|p

∫
pn+vp(u)

χ(x)λ(dx) =
p−n−vp(u)

|u|p
1−n(u).

Hence we deduce that that
1̂n = p−n1−n.

Now, let a ∈ Qp and n ∈ Z. Let 1a,n be the indicator function of the
coset a + pn. Since any function f in the Schwartz space C∞c (Qp) is a linear
combination of the functions 1a,n, it suffices to compute the Fourier transforms
of these elementary functions to get the transform of f .

Proposition 5.4. — For u ∈ Qp, we have :

1̂a,n(u) = p−nχa(u)1−n(u).

Proof. — This follows easily from the change of variable u 7→ a+u and from
the fact that 1̂n = p−n1−n. �

So, if f ∈ C∞c (Qp) such that f is constant on cosets of pn we can write
f =

∑`
k=1 ck1ak,n. Then we get the following

f̂(u) =
∑̀
k=0

ck1̂ak,n(u) = p−n

(∑̀
k=0

ckχ(aku)

)
1−n(u).
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